Supporting Information

For

Synthesis and Characterization of TiO$_2$ Nanotubes Supported Rh-nanoparticle Catalysts for Regioselective Hydroformylation of Vinyl Acetate

Yukun Shi, Xiaojing Hu, Lili Wang, Baolin Zhu, Shoumin Zhang, Weiping Huang*

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China

Correspondent: Weiping Huang

Email: hwp914@nankai.edu.cn

Tel: +86-22-23502996

Fax: +86-22-23502669
S1. GC temperature-programmed

The analysis of the reaction products was performed by gas chromatography using a Shimadzu GC-2014 gas chromatograph equipped with a 30 m×0.53 mm SE-30 capillary column and a FID detector. Temperature program: 45 °C, hold for 3 mins; ramp 1, 2 °C/min to 60 °C, hold for 0 mins; ramp 2, 25 °C/min to 250 °C, hold for 5 min; injection temperature, 255 °C; detector temperature, 260 °C.

S.2 GC profiles of samples come from the Hydroformylation of Vinyl Acetate

Substrate: vinyl acetate, retention time (RT): 1.763 min;
Solvent: toluene, RT: 4.984 min;
Produnt: 3-acetoxy propanal, RT: 5.212 min; 2-acetoxy propanal, RT: 5.675 min.
By-product: ethylene, RT: 1.132 min; propanal, RT: 1.336 min; acetic acid, RT: 1.892 min; acetic ether, RT: 2.608.

Reaction conditions: vinyl acetate = 5 mL, sub/Rh=8000, Rh/TNTs-C = 0.40 g (7.0×10⁻³ mmol rhodium), temp. = 100 °C, syngas pressure (CO/H₂ = 1) = 6.0 MPa, toluene = 65 mL, and reaction time = 2 h.