Enhanced multi-phonon Raman scattering and nonlinear optical power limiting in ZnO:Au nanostructures

R. Udayabhaskar1, B. Karthikeyan1*, P. Sreekanth2, Reji Philip2

1Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, India
2Ultrafast and Nonlinear Optics Lab, Light and Matter Physics Group, Raman Research Institute, Bangalore 560080, India

Figure ES1: SEM image of pure ZnO (without gold content). Figure depicts the irregular, agglomerated morphology.

* Corresponding Author.: Email: balkarin@yahoo.com (B. Karthikeyan), Phone: 0431-2503612; FAX: +91-(0) 0431-2500133: reji@rri.res.in (Reji Philip)
Figure ES2: Electric field $|E_{out}|^2$ outside gold nanospheres of radius 5, 10 and 20 nm respectively, in a medium with refractive index of 2.0034 (ZnO).

Figure ES3: SEM image of the ZAu2-M sample exhibits spherical granules in an agglomerated form. EDX analysis confirms the presence of Au along with Zn and O in the samples.
Figure ES4: Optical absorption spectrum of ZAu2-M sample.

Figure ES5: Photoluminescence spectrum of ZAu2-M sample.
Figure ES6: Intensity dependent optical transmission of ZAu2-M sample calculated from the open aperture Z-scan curves of the samples (given in inset) measured using 532 nm, 5 ns laser pulses (incident laser energy of 150 μJ). Circles are data points while solid lines are numerical fits.