Controllable synthesis of large-area free-standing amorphous carbon films and their potential application in supercapacitors

Daming Zhu\textsuperscript{a}, Yuhao Liu\textsuperscript{a}, Lili Yuan\textsuperscript{a}, Yi Liu\textsuperscript{b}, Xiaolong Li\textsuperscript{b}, Lin Yi\textsuperscript{a}, Helin Wei\textsuperscript{a*}, Kailun Yao\textsuperscript{a}

\textsuperscript{a} School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China

\textsuperscript{b} Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201203, PR China

*Corresponding author: Tel: +86-27-8756-1131.
E-mail address: hlwei@hust.edu.cn (H. L. Wei).

Fig. S1-Experimental set-up and process used for the synthesis of FS-ACF. (a) Schematic of APCVD system. (b) The process used for synthesis of FS-ACF: steps, synthesis time and temperature.
Fig. S2 - Film thickness of the FS-ACF dependence of the growth temperature and the cooling rate.
Fig. S3 - (a) CV curves of SC based on FS-ACF grown at 550 ℃ under different scan rates. (b) Cycling stability performance of the SC based on FS-ACF grown at 600 ℃, inset shows several CV curves during 2000 cycles at scan rate of 500 mV/s. (c) GCD curves of SC based on the FS-ACF grown at 550 ℃ at different current densities. (d) Area specific capacitance and (e) volumetric specific capacitance of the SCs based on the FS-ACFs calculated from the GCD curves at various current densities. (f) Self-discharge profile in two SCs based on the FS-ACFs.