Supporting Information

Nitroaromatic fluorescent sensor from a novel tripyrenyl truxene

Pornpat Sam-ang, Danusorn Raksasorn, Mongkol Sukwattanasinitt, and Paitoon Rashatasakhon

Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

E-mail: paitoon.r@chula.ac.th
Tel.: +66 (2) 2187620
Fax.: +66 (2) 2187598
Figure S1 1H-NMR spectrum of 2
Figure S2 13C-NMR spectrum of 2
Figure S3 IR spectrum of 2
Figure S4 MALDI-TOF Mass spectrum of 2
Figure S5 1H-NMR spectrum of 3
Figure S6 13C-NMR spectrum of 3
Figure S7 IR spectrum of 3
Figure S8 1H-NMR spectrum of 1
Figure S9 13C-NMR spectrum of 1
Figure S10 IR spectrum of 1
Figure S11 MALDI-TOF Mass spectrum of 1
Figure S12 Fluorescent spectra of 1 in THF with various water contents.
Figure S13 Effect of water content in THF on fluorescent quenching efficiency of 1 (1 μM) by picric acid (0.1 mM)
Figure S14 Absorption spectra of 1, 2-nitrophenol and picric acid, and emission spectrum of 1 in CHCl₃
Figure S15 Absorption spectra of 1, 2-nitrophenol and picric acid, and emission spectrum of 1 in 10% H$_2$O in THF.
Figure S16 Fluorogenic responses of 1 by picric acid in THF with 10% aqueous buffer of various pHs.