Supplementary Information for:

Charge-transfer metal-organic frameworks based on CuCN architecture units: crystal structures, luminescence properties and theoretical investigations

Rong-Yi Huang,*a Chen Xue,a Chang-Hai Zhu,a Zhu-Qing Wang,a Heng Xu,a and Xiao-Ming Ren*b

a Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, P. R. China
b Department of Applied Chemistry, Science College, Nanjing University of Technology, Nanjing, 210009, P. R. China
\[
Cu^{2+} + [Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3-} + Cu^+
\]

\[
nCu^+ + nCN^- + mL \rightarrow [(CuCN)_{nL}] (L=bix, bmimb, bimb)
\]

(1, \(n=4, m=2 \); 2, \(n=2, m=1 \); 4, \(n=3, m=1 \))

Scheme S1. A reasonable mechanism under the solvothermal condition
Fig. S1 View of the 3D framework of complex 1 along the b-axis, H-atoms have been omitted for clarity.
Fig. S2 View of the 3D framework of complex 2 along the [101] direction, H-atoms have been omitted for clarity.
Fig. S3 View of the 3D framework of complex 3 along the a-axis, H-atoms have been omitted for clarity.
Fig. S4 View of the 3D supramolecular framework of complex 4 along the [110] direction, H-atoms have been omitted for clarity.
Fig. S5 Thermogravimetry curves for 1-4
Fig. S6 Calculation models of 1-4.
Fig. S7 Frontier molecular orbitals of 1-4 for the ground state geometry in the gas phase.