Supporting Information

Low temperature growth of hybrid ZnO/TiO2 nano-sculptured foxtail-structures for dye-sensitized solar cells

a Thin Film Centre, Scottish Universities Physics Alliance (SUPA), University of the West of Scotland, Paisley, PA1 2BE, UK.
b EaStCHEM School of Chemistry, University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JJ
c Thin Film Solutions Ltd, Block 7, West of Scotland Science Park, Kelvin Campus, Maryhill Rd, Glasgow G20 0SP, UK.
d School of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.

* Corresponding author: Dr. Richard Y. Q. Fu, e-mail: richard.fu@uws.ac.uk
Figure S-1. Cross-sectional SEM image of the bare-ZnO NRs obtained after 4hrs growth (Z0). Scale bar is 3μm.

Figure S-2. TEM image of a single ZnO core-TiO2 shell hybrid structure with the modification time of 120mins (TZ4). Scale bar is 200nm. The thickness of the shell is around 55nm.

Figure S-3. (a) Cross section of the TZ4 and (b) the corresponding EDS line scan.
Impedance spectra

Equivalent circuit used to fit EIS results are followed by previous studies \cite{1,2,3}. The fitting was achieved by zview software (Scribner Associates, Inc.) using non-linear least squares regression. Constant phase elements (CPEs) are used to replace all capacitances to improve quality of fits. However, the EIS results do not show a clear transmission-line feature in this experiment, which is commonly attributed to a good electron transport in the semiconductor oxide (i.e. ZnO) \cite{4,5}. For this reason, it is not possible to extract reliable values from the equivalent circuit-fitting and we limited our study to analyse the recombination behavior of the NRs and hybrid nanostructures.

The details of the circuit are:

- R_s: series resistance, including the sheet resistance of TCO glass and contact resistance of the cell
- R_{co}: resistance at ITO/seed layer/nanostructure contact
- C_{CO}: the capacitance at ITO/seed layer/nanostructure contact
- R_{Ct}: the charge-transfer resistance and the corresponding double-layer capacitance at exposed ITO/electrolyte interface
- r_t: the transport resistance of electrons in ZnO/TiO$_2$ nanostructure
- r_{ct}: charge-transfer resistance of the charge recombination process
- C_{Pt}: the capacitance of the nanostructure/electrolyte interface
- R_{Pt}: charge-transfer resistance at the counter electrode (Pt coated ITO)
- C_{Pt}: double-layer capacitance at the counter electrode (Pt coated ITO)
- Z_d: Warburg element showing the Nernst diffusion of I$_3$- in electrolyte

Electron transport

Measurements of electron transport time followed procedures reported in Ref. \cite{6}. A square-wave pulse was applied to a white-light LED, used to illuminate the DSSCs. The modulation amplitude produced a $<10\%$ change in DSSC current. The current was determined by ohm law and an average of 5 photocurrent transient signals was recorded for each test.
Fig. S-4(a) shows representative transient photo current decay at a short circuit work condition for Z0, TZ2, and TZ4. Each transient is fitted by the following equation:

\[y = y_0 + A e^{-t/\tau_{tr}} \]

where \(\tau_{tr} \) is the characteristic time for electron transport. The values of characteristic time for \(\tau_{tr} \) under a range of light intensities are plotted against the corresponding short-circuit current density \(J_{SC} \) in Fig. S-4(b).
