Electronic supplementary information

A Robust and Low-Cost Strategy to Prepare Cu$_2$ZnSnS$_4$
Precursor Solution and Its Application in Cu$_2$ZnSn(S,Se)$_4$ Solar Cells

Qingwen Tian,a Yong Cui,b Gang Wang,a,* and Daocheng Pana,**

a: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin, 130022, China

b: Shenyang R&D Center Laboratory for Material Science, Institute of Metal Research, Chinese Academy of Sciences. Wenhua Road 72, Shenyang, 110016, China

E-mail: wsu@ciac.ac.cn and pan@ciac.ac.cn.

Figure S1. A digital photograph of graphite box.
Figure S2. A digital photograph of CZTSSe solar cells.

Figure S3. XPS spectra of the as-fabricated CZTS thin film.
Figure S4. XPS spectra of the selenized CZTSSe thin film.
Figure S5. The band gap of selenized CZTSSe thin film was calculated by extrapolating the Kubelka-Munk function to K/S=0.