Supporting Information

for

HEPES-involved Hydrothermal Synthesis of Fe₃O₄ Nanoparticles and Their Biological Application

Hui Li, Zhong Lu, Gang Cheng, Kaifeng Rong, Fengxi Chen, and Rong Chen*

School of Chemistry and Environmental Engineering and Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, PR China

* To whom correspondence should be addressed. Prof. R. Chen, E-mail: rchenhku@hotmail.com

Tel.: (+86)13659815698; fax: (+86) 2787195671.
Figure S1. The EDX spectrum of Fe$_3$O$_4$ nanoparticles prepared by hydrothermal method from FeCl$_2$ precursor in HEPES buffer solution when HEPES/FeCl$_2$ molar ratio was 1:1 (S1).
Figure S2. FT-IR spectra of HEPES (a) and the as-synthesized Fe$_3$O$_4$ nanoparticle (S1) (b).
Figure S3. SEM images of the as-prepared products synthesized with the different molar ratio of HEPES and Fe of 2 (a, S3) and 5 (b, S4), respectively.
Figure S4. XRD patterns and SEM images of the as-prepared products in HEPES solutions with different pH values (a and b: S5; c and d: S6).
Figure S5. Agar plates of *S. aureus* bacterial growth in the presence of Fe$_3$O$_4$ nanoparticles.