Supporting Information

A novel coumarin based molecular switch for dual sensing of Zn(II) and Cu(II)

Deblina Sarkar,a Ajoy Kumar Pramanik,a and Tapan Kumar Mondal*a

a Department of Chemistry, Jadavpur University, Kolkata-700032, India E-mail: tkmondal@chemistry.jdvu.ac.in

Contents

Fig. S1. IR spectrum of H2L in KBr disk
Fig. S2. IR spectrum of H2L-Zn2+ in KBr disk
Fig. S3. IR spectrum of H2L-Cu2+ in KBr disk
Fig. S4. 1H-NMR spectra of H2L in CDCl3
Fig. S5. 1H-NMR spectra of H2L-Zn2+ complex in CDCl3
Fig. S6. HRMS spectra of the receptor H2L
Fig. S7. HRMS spectra of the receptor H2L-Zn2+ complex
Fig. S8. HRMS spectra of the receptor H2L-Cu2+ complex
Fig. S9. UV-Vis spectra of chemosensor (H2L) (20 μM) upon addition of 2 equivalent of various metal ions (40 μM)
Fig. S10. Change in emission spectrum of H2L-Zn2+ upon gradual addition of EDTA (40 μM) in 1:1, v/v CH3CN:H2O
Fig. S11. Change in emission spectrum of H2L-Cu2+ upon gradual addition of EDTA (40 μM) in 1:1, v/v CH3CN:H2O
Fig. S12. Mole ratio plot of Zn2+ to the receptor H2L
Fig. S13. Mole ratio plot of Cu2+ to the receptor H2L
Fig. S14. Job’s plot diagram of the receptor (H2L) for Zn2+
Fig. S15. Job’s plot diagram of the receptor (H2L) for Cu2+
Fig. S16. Linear response curve of H2L at 465 nm depending on the Zn2+ concentration
Fig. S17. Linear response curve of H2L at 485 nm depending on the Cu2+ concentration
Fig. S18. Determination of binding constant of H2L for Zn2+ from fluorescent titration data
Fig. S19. Determination of binding constant of H2L for Cu2+ from fluorescent titration data
Fig. S20. Change in emission spectrum of H2L (20 μM) upon addition 40 μM of various metal ions.
Fig. S21. DFT optimized structure of H2L-Zn2+ complex
Fig. S22. DFT optimized structure of H2L-Cu2+ complex
Fig. S23. Contour plots of some selected molecular orbitals of H2L
Fig. S24. Contour plots of some selected molecular orbitals of H2L-Zn2+ complex
Fig. S25. Contour plots of some selected molecular orbitals of H2L-Cu2+ complex
Fig. S26. Spin density plot of H2L-Cu2+ complex
Table S1. Vertical electronic transitions calculated by TDDFT/B3LYP/CPCM method for H2L, H2L-Zn2+ and H2L-Cu2+ complexes
Fig. S1. IR spectrum of H$_2$L in KBr disk

Fig. S2. IR spectrum of H$_2$L-Zn$^{2+}$ in KBr disk
Fig. S3. IR spectrum of H$_2$L-Cu$^{2+}$ in KBr disk
Fig. S4. 1H-NMR spectra of H$_2$L in CDCl$_3$

Fig. S5. 1H-NMR spectra of H$_2$L-Zn$^{2+}$ in CDCl$_3$
Fig. S6. HRMS spectra of the receptor H$_2$L
Fig. S7. HRMS spectra of the receptor H$_2$L-Zn$^{2+}$ complex
Fig. S8. HRMS spectra of the receptor H_2L-Cu^{2+} complex
Fig. S9. UV-Vis spectra of chemosensor (H_2L) (20 μM) upon addition of 2 equivalent of various metal ions i.e, Na^+, K^+, Ca^{2+}, Mg^{2+}, Cd^{2+}, Mn^{2+}, Co^{2+}, Ni^{2+}, Cu^{2+}, Zn^{2+}, Al^{3+}, Cr^{3+}, Fe^{3+}, and Hg^{2+} (40 μM)
Fig. S10. Change in emission spectrum of H₂L-Zn²⁺ upon gradual addition of EDTA (40 μM) in 1:1, v/v CH₃CN:H₂O.

Fig. S11. Change in emission spectrum of H₂L-Cu²⁺ upon gradual addition of EDTA (40 μM) in 1:1, v/v CH₃CN:H₂O.
Fig. S12. Mole ratio plot of Zn$^{2+}$ to the receptor H$_2$L

Fig. S13. Mole ratio plot of Cu$^{2+}$ to the receptor H$_2$L
Fig. S14. Job’s plot diagram of the receptor (H₂L) for Zn²⁺ (where ΔF indicates the change of emission intensity at 466 nm)

Fig. S15. Job’s plot diagram of the receptor (H₂L) for Cu²⁺
Determination of detection limit:

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of H$_2$L without any analyte was measured by 10 times and the standard deviation of blank measurements was found to be 2.6756×10$^{-3}$.

The limit of detection (LOD) of H$_2$L for Zn$^{2+}$ and Cu$^{2+}$ was determined from the following equation: $LOD = K \times \sigma$ Where $K = 3$ in this case and $\sigma = (S_b)/(S)$; S_b is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the linear response curve of H$_2$L for Zn$^{2+}$ graph we get slope = 4.11821×107. Thus using the formula we get the LOD = 1.94×10$^{-8}$ M.

![Graph](image)

Fig. S16. Linear response curve of H$_2$L at 465 nm depending on the Zn$^{2+}$ concentration.

From the linear response curve of H$_2$L for Zn$^{2+}$ graph we get slope = -9.5×106, Thus using the formula we get the LOD = 1.87×10$^{-9}$ M.
Fig. S17. Linear response curve of H$_2$L at 485 nm depending on the Cu$^{2+}$ concentration.

Determination of binding constant from Fluorescence titration data:

Binding constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

\[
\frac{1}{(F - F_0)} = \frac{1}{K_a(F_{\text{max}} - F_0)} \left\{ [M^{n+}]^c \right\} + \frac{1}{[F_{\text{max}} - F_0]}
\]

Here F_0, F and F_{max} indicate the emission in absence of, at intermediate and at infinite concentration of metal ion respectively. The binding constant K_a is determined from the ratio of intercept and slope of Benesi-Hildebrand plot. Plot of $1/(F - F_0)$ vs $1/[Zn^{2+}]^2$ gives a straight line indicating 1:2 complexation between H$_2$L and Zn$^{2+}$.

For the determination of binding constant of Cu$^{2+}$ the equation modifies to

\[
\frac{1}{(F - F_0)} = \frac{1}{K_a(F_{\text{min}} - F_0)} \left\{ [M^{n+}]^c \right\} + \frac{1}{[F_{\text{min}} - F_0]}
\]

Here F_0, F and F_{min} indicate the emission in absence of, at intermediate and at infinite concentration of metal ion respectively. The binding constant K_a is determined from the ratio of intercept and slope of Benesi-Hildebrand plot. Plot of $1/(F - F_0)$ vs $1/[Cu^{2+}]^2$ gives a straight line indicating 1:2 complexation between H$_2$L and Cu$^{2+}$.
Fig. S18. Determination of association constant of H$_2$L for Zn$^{2+}$ from fluorescent titration data

\[y = 2.77729 \times 10^{-13} x + 0.00051 \]

\[R^2 = 0.9992 \]

Fig. S19. Determination of association constant of H$_2$L for Cu$^{2+}$ from fluorescent titration data

\[y = -4.25555 \times 10^{-13} x - 0.00577 \]

\[R^2 = 0.99738 \]
Fig. S20. Change in emission spectrum of H$_2$L (20 µM) upon addition of Na$^+$, K$^+$, Ca$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, Fe$^{3+}$, Cr$^{3+}$, Al$^{3+}$, Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$, Zn$^{2+}$, Cd$^{2+}$ and Hg$^{2+}$ (40 µM) in CH$_3$CN:H$_2$O (1:1, v/v, pH=7.2).
Fig. S21. Optimized structure of H$_2$L-Zn$^{2+}$ complex by DFT/B3LYP/6-31G(d,p)/LANL2DZ method

Fig. S22. Optimized structure of H$_2$L-Cu$^{2+}$ complex by DFT/UB3LYP/6-31G(d,p)/LANL2DZ method
Fig. S23. Contour plots of some selected molecular orbitals of H₂L.

Fig. S24. Contour plots of some selected molecular orbitals of H₂L-Zn²⁺ complex.
Fig. S25. Contour plots of some selected molecular orbitals of $\text{H}_2\text{L-Cu}^{2+}$ complex
Fig. S26. Spin density plot of H$_2$L-Cu$^{2+}$ complex

Table S1. Vertical electronic transitions calculated by TDDFT/B3LYP/CPCM method for chemosensor H$_2$L, H$_2$L-Zn$^{2+}$ and H$_2$L-Cu$^{2+}$ complexes

<table>
<thead>
<tr>
<th>Compds.</th>
<th>$\lambda_{\text{excitation}}$ (nm)</th>
<th>Osc. Strength (f)</th>
<th>Key transition</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$L</td>
<td>338.4</td>
<td>0.7214</td>
<td>HOMO \rightarrow LUMO</td>
<td>ILCT</td>
</tr>
<tr>
<td>H$_2$L-Zn$^{2+}$</td>
<td>340.2</td>
<td>0.6960</td>
<td>HOMO \rightarrow LUMO</td>
<td>ILCT</td>
</tr>
<tr>
<td>H$_2$L-Cu$^{2+}$</td>
<td>482.0</td>
<td>0.0175</td>
<td>HOMO(β) \rightarrow LUMO+1(β)</td>
<td>LMCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO(β) \rightarrow LUMO(β)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>358.9</td>
<td>0.2016</td>
<td>HOMO-1(β) \rightarrow LUMO+2(β)</td>
<td>ILCT</td>
</tr>
</tbody>
</table>