Supplementary Information for

Single reactor deposition of silicon/tungsten oxide core-shell heterostructure nanowires with controllable structure and optical properties

Su Kong Chong1*, Chang Fu Dee2, Saadah Abdul Rahman1*

1Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia.

2Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia.

Corresponding Author

*Email address: sukong1985@yahoo.com.my, saadah@um.edu
Figure S1 typical XPS spectrum of the Si/WO₃ core-shell NWs.
Figure S2 Tauc’s plots of the WO$_3$ thin films prepared at different T_f.
Figure S3 Tauc’s plots of Si NWs, and Si/WO$_3$ core-shell NWs prepared at different T_f. The Tauc’s plots of the Si/WO$_3$ core-shell NWs revealed the indirect optical band gap of both Si (lower energy) core and WO$_3$ (higher energy) shell.
Figure S4 Typical current density versus potential plots of the WO$_3$ films under dark and illumination.
Figure S5 Photocurrent density versus time plot of the Si/crystalline WO$_3$ core-shell NWs.