Supporting Information

2-Pyrrolecarbaldiminato-Cu(II) complexes catalyzed three-component 1,3-dipolar cycloaddition for 1,4-disubstituted 1,2,3-triazoles synthesis in water at room temperature

Changjian Zhou, Jie Zhang, Ping Liu, Jianwei Xie* and Bin Dai*

School of Chemistry and Chemical Engineering / Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China

Email: cesxjw@gmail.com (J. Xie), db_tea@shzu.edu.cn (B. Dai)

Table of Contents

Materials and Methods...2
General procedure for the synthesis of 1,2,3-triazoles 7a-7v..............................2
General procedure for the synthesis of di-/tri-triazoles 7w and 7x......................2
Characterization data for all 1,2,3-triazoles products....................................3-10
Copies of 1H NMR and 13C NMR spectra...11-34
Materials and Methods

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Column chromatography was performed with silica gel (200-300 mesh) purchased from Qingdao Haiyang Chemical Co. Ltd. Thin-layer chromatography was carried out with Merck silica gel GF_{254} plates and visualized by exposure to UV light (254 nm). All 1,4-disubstituted 1,2,3-triazoles are characterized by 1H NMR and 13C NMR, which were compared with the previously reported data. 1H NMR spectra and 13C NMR spectra were recorded at room temperature on a Varian Inova-400 instrument at 400 MHz and 100 MHz, respectively.

General procedure for the synthesis of 1,2,3-triazoles 7a-7v: A 25 mL Schlenk tube was charged with Cu(II)-complex 3 (0.005 mmol), benzyl halides (0.5 mmol), NaN$_3$ (0.6 mmol), alkynes (0.6 mmol) and water (1 mL). The mixture was stirred at room temperature and monitored by TLC until the benzyl halide being consumed. The reaction mixture was then extracted with ethyl acetate (3×10 mL). The combined organic phases was washed with water and brine, dried over anhydrous Na$_2$SO$_4$, and concentrated in vacuo. The residue was purified by flash column chromatograph on silica gel (ethyl acetate/petroleum ether as the eluent) to provide the target products.

General procedure for the synthesis of di-/tri-triazoles 7w and 7x: A 25 mL Schlenk tube was charged with Cu(II)-complex 3 (0.0025 mmol for dihalides and 0.00375 mmol for trihalides), benzyl halides (0.125 mmol), NaN$_3$ (0.3 mmol for dihalides and 0.45 mmol for trihalides), phenylacetylene (0.6 mmol for dihalides and 0.9 mmol for trihalides) and water (1 mL). The mixture was stirred at 60 °C and monitored by TLC until the benzyl halide being consumed. The reaction mixture was then extracted with ethyl acetate (3×10 mL). The combined organic phases was washed with water and brine, dried over anhydrous Na$_2$SO$_4$, and concentrated in vacuo. The residue was purified by flash column chromatograph on silica gel (ethyl acetate/petroleum ether as the eluent) to provide the target products.
Characterization data for all 1,2,3-trizoles products

1-Benzyl-4-phenyl-1H-1,2,3-triazole (7a)\[1\]

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{C} & \quad \text{N} \\
\end{align*}
\]

97% yield for benzyl bromide and 90% for benzyl chloride. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.81-7.79 (m, 2H), 7.67 (s, 1H), 7.36-7.42 (m, 5H), 7.29-7.33 (m, 3H), 5.58 (s, 2H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 148.2, 134.7, 130.5, 129.1, 128.8, 128.8, 128.1, 128.0, 125.7, 119.5, 54.2.

1-Benzyl-4-(p-tolyl)-1H-1,2,3-triazole (7b)\[2\]

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{C} & \quad \text{N} \\
\end{align*}
\]

97% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.68 (d, \(J = 8.4\) Hz, 2H), 7.62 (s, 1H), 7.36-7.42 (m, 3H), 7.30-7.32 (m, 2H), 7.20 (d, \(J = 7.6\) Hz, 2H), 5.57 (s, 2H), 2.36 (s, 3H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 148.3, 138.0, 134.7, 129.5, 129.1, 128.7, 128.0, 127.7, 125.6, 119.2, 54.2, 21.3.

1-Benzyl-4-(4-ethylphenyl)-1H-1,2,3-triazole (7c) \[3\]

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{C} & \quad \text{N} \\
\end{align*}
\]

91% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.71 (d, \(J = 8.4\) Hz, 2H), 7.62 (s, 1H), 7.36-7.41 (m, 3H), 7.29-7.31 (m, 2H), 7.23 (d, \(J = 8.4\) Hz, 2H), 5.57 (s, 2H), 2.66 (q, \(J = 7.6\) Hz, 2H), 1.24 (t, \(J = 7.6\) Hz, 3H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 148.3, 144.4, 134.9, 129.1, 128.7, 128.3, 128.1, 128.0, 125.7, 119.3, 54.2, 28.7, 15.6.

1-Benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (7d) \[4\]

\[
\begin{align*}
\text{N} & \quad \text{N} \\
\text{C} & \quad \text{N} \\
\end{align*}
\]

91% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.72 (d, \(J = 8.8\) Hz, 2H), 7.57 (s, 1H), 7.36-7.41 (m, 3H), 7.29-7.32 (m, 2H), 6.93 (d, \(J = 8.8\) Hz, 2H), 5.56 (s, 2H), 3.83 (s, \(J = 3.83\) Hz, 3H).
3H). 13C NMR (100 MHz, CDCl$_3$): δ 159.7, 148.1, 134.9, 129.2, 128.8, 128.1, 127.1, 123.3, 118.8, 114.3, 55.4, 54.3.

1-Benzyl-4-(4-(pentyloxy)phenyl)-1H-1,2,3-triazole (7e)$^{[4]}$

\[
\begin{align*}
\text{HN} & \hspace{1cm} \text{N} \\
& \hspace{1cm} \text{OC}_5\text{H}_5
\end{align*}
\]

87% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.70 (d, J = 8.8 Hz, 2H), 7.56 (s, 1H), 7.36-7.41 (m, 3H), 7.29-7.32 (m, 2H), 6.92 (d, J = 8.8 Hz, 2H), 5.56 (s, 2H), 3.97 (t, J = 6.4 Hz, 2H), 1.76-1.83 (m, 2H), 1.35-1.47 (m, 4H), 0.93 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): δ 159.2, 148.2, 134.8, 129.1, 128.7, 128.0, 126.9, 123.0, 118.6, 114.8, 68.0, 54.2, 28.9, 28.2, 22.5, 14.0.

1-Benzyl-4-(m-tolyl)-1H-1,2,3-triazole (7f)$^{[5]}$

\[
\begin{align*}
\text{HN} & \hspace{1cm} \text{N} \\
& \hspace{1cm} \text{Ar}
\end{align*}
\]

91% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.66 (s, 1H), 7.64 (s, 1H), 7.55-7.58 (m, 1H), 7.36-7.42 (m, 3H), 7.26-7.32 (m, 3H), 7.11-7.14 (m, 1H), 5.58 (s, 2H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl$_3$): δ 148.3, 138.5, 134.7, 130.4, 129.1, 128.9, 128.7, 128.0, 126.3, 122.8, 119.5, 54.2, 21.4.

1-Benzyl-4-(4-fluorophenyl)-1H-1,2,3-triazole (7g)$^{[6]}$

\[
\begin{align*}
\text{HN} & \hspace{1cm} \text{N} \\
& \hspace{1cm} \text{F}
\end{align*}
\]

97% yield. 1H NMR (400 MHz, CDCl$_3$): δ 7.74-7.79 (m, 2H), 7.61 (s, 1H), 7.37-7.42 (m, 3H), 7.30-7.32 (m, 2H), 7.06-7.12 (m, 2H), 5.57 (s, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 163.8, 161.4, 147.3, 134.6, 129.2, 128.8, 128.0, 127.5, 127.4, 126.8, 126.8, 119.3, 115.9, 115.6, 54.2.
1-Benzyl-4-(3-fluorophenyl)-1H-1,2,3-triazole (7h) \[7\]

87% yield. 1H NMR (400 MHz, CDCl$_3$): $\delta 7.66$ (s, 1H), 7.51-7.57 (m, 2H), 7.34-7.43 (m, 4H), 7.30-7.33 (m, 2H), 6.98-7.03 (m, 1H), 5.58 (s, 2H). 13C NMR (101 MHz, CDCl$_3$): $\delta 164.3, 161.9, 147.2, 147.1, 134.5, 132.7, 132.6, 130.4, 130.3, 129.2, 128.9, 128.1, 121.3, 121.2, 119.9, 115.0, 114.8, 112.7, 112.5, 54.3.

1-Benzyl-4-(4-chlorophenyl)-1H-1,2,3-triazole (7i) \[8\]

92% yield. 1H NMR (400 MHz, CDCl$_3$): $\delta 7.73$ (d, $J = 8.4$ Hz, 2H), 7.65 (s, 1H), 7.35-7.43 (m, 5H), 7.30-7.33 (m, 2H), 5.58 (s, 2H). 13C NMR (100 MHz, CDCl$_3$): $\delta 147.1, 134.5, 133.9, 129.2, 129.0, 129.0, 128.9, 128.1, 126.9, 119.6, 54.3.

1-Benzyl-4-(4-bromophenyl)-1H-1,2,3-triazole (7j) \[9\]

89% yield. 1H NMR (400 MHz, CDCl$_3$): $\delta 7.67$ (d, $J = 8.8$ Hz, 2H), 7.65 (s, 1H), 7.50-7.54 (m, 2H), 7.37-7.43 (m, 3H), 7.30-7.33 (m, 2H), 5.57 (s, 2H). 13C NMR (100 MHz, CDCl$_3$): $\delta 147.1, 134.5, 131.9, 129.5, 129.2, 128.8, 128.1, 127.2, 122.0, 119.6, 54.2.

1-Benzyl-4-cyclopropyl-1H-1,2,3-triazole (7k) \[10\]

60% yield. 1H NMR (400 MHz, CDCl$_3$): $\delta 7.33-7.39$ (m, 3H), 7.23-7.26 (m, 2H), 7.15 (s, 1H), 5.46 (s, 2H), 1.88-1.95 (m, 1H), 0.89-0.94 (m, 2H), 0.79-0.83 (m, 2H). 13C NMR (101 MHz, CDCl$_3$) $\delta 150.6, 135.0, 129.0, 128.6, 128.0, 120.0, 53.9, 7.7, 6.7.
1-Benzyl-4-cyclohexyl-1H-1,2,3-triazole (7l) \[^{11}\]
![Structure of 1-Benzyl-4-cyclohexyl-1H-1,2,3-triazole (7l)](image)
77% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.32-7.40 (m, 3H), 7.24-7.27 (m, 2H), 7.15 (s, 1H), 5.49 (s, 2H), 2.71-2.78 (m, 2H), 2.01-2.04 (m, 2H), 1.76-1.80 (m, 2H), 1.33-1.40 (m, 4H), 1.20-1.28 (m, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 154.2, 135.0, 129.0, 128.6, 128.0, 119.2, 54.0, 35.3, 33.0, 26.1, 26.0.

1-Benzyl-4-(cyclohex-1-en-1-yl)-1\(^1\)H-1,2,3-triazole (7m) \[^{12}\]
![Structure of 1-Benzyl-4-(cyclohex-1-en-1-yl)-1\(^1\)H-1,2,3-triazole (7m)](image)
75% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.31-7.38 (m, 4H), 7.24-7.29 (m, 2H), 6.49-6.51 (m, 1H), 5.50 (d, J = 5.2 Hz, 2H), 2.34-2.36 (m, 2H), 2.17-2.20 (m, 2H), 1.72-1.76 (m, 2H), 1.63-1.67 (m, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) δ 150.0, 135.0, 129.1, 128.7, 128.0, 127.3, 125.1, 118.3, 54.1, 26.4, 25.3, 22.5, 22.3.

2-(1-Benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol (7n) \[^{11}\]
![Structure of 2-(1-Benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol (7n)](image)
96% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.36-7.41 (m, 3H), 7.35 (s, 1H), 7.27-7.29 (m, 2H), 5.50 (s, 2H), 2.62 (s, 1H), 1.61 (s, 6H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 156.1, 134.6, 129.1, 128.7, 128.1, 119.1, 68.5, 54.1, 30.4.

1-Benzyl-4-pentyl-1\(^1\)H-1,2,3-triazole (7o) \[^{13}\]
![Structure of 1-Benzyl-4-pentyl-1\(^1\)H-1,2,3-triazole (7o)](image)
68% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.33-7.39 (m, 3H), 7.24-7.26 (m, 2H), 7.19 (s, 1H), 5.49 (s, 2H), 2.68 (t, J = 8.0 Hz, 2H), 1.60-1.68 (m, 2H), 1.30-1.33 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) δ 149.0, 135.0, 129.0, 128.6, 127.9, 120.5, 54.0, 31.5, 29.1, 25.7, 22.4, 14.0.
1-(4-Methylbenzyl)-4-phenyl-1H-1,2,3-triazole (7p) \[^{[2]}\]

80% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.78-7.80\) (m, 2H), 7.63 (s, 1H), 7.37-7.41 (m, 2H), 7.28-7.33 (m, 1H), 7.18-7.23 (m, 4H), 5.53 (s, 2H), 2.36 (s, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 138.7, 131.6, 129.8, 128.8, 128.1, 128.1, 125.7, 125.7, 125.6, 119.4, 54.0, 21.2.\)

1-(4-Bromobenzyl)-4-phenyl-1H-1,2,3-triazole (7q) \[^{[3]}\]

71% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.79-7.81\) (m, 2H), 7.66 (s, 1H), 7.50-7.54 (m, 2H), 7.39-7.43 (m, 2H), 7.30-7.35 (m, 1H), 7.19 (d, \(J = 8.4\) Hz, 2H), 5.53 (s, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 148.4, 133.7, 132.3, 130.3, 129.6, 128.8, 128.3, 125.7, 122.9, 119.5, 53.5.\)

1-(4-Chlorobenzyl)-4-phenyl-1H-1,2,3-triazole (7r) \[^{[4]}\]

74% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.80\) (d, \(J = 7.2\) Hz, 2H), 7.67 (s, 1H), 7.31-7.43 (m, 5H), 7.26 (d, \(J = 7.2\) Hz, 2H), 5.55 (s, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 148.3, 134.8, 133.2, 130.4, 129.3, 129.3, 128.8, 128.3, 125.7, 119.5, 53.4.\)

1-(4-Nitrobenzyl)-4-phenyl-1H-1,2,3-triazole (7s) \[^{[2]}\]

90% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.24\) (d, \(J = 8.8\) Hz, 2H), 7.82 (d, \(J = 7.2\) Hz, 2H), 7.76 (s, 1H), 7.33-7.46 (m, 5H), 5.70 (s, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 148.2, 141.9, 130.2, 129.0, 128.7, 128.6, 125.9, 124.4, 119.9, 53.3.\)
1-(4-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole (7t) \[8\]

\[
\begin{align*}
\text{F} & \quad \text{N} \quad \text{N} \\
& \quad \text{N} \quad \text{N}
\end{align*}
\]

79% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.79-7.82 (m, 2H), 7.66 (s, 1H), 7.39-7.43 (m, 2H), 7.29-7.35 (m, 3H), 7.06-7.11 (m, 2H), 5.55 (s, 2H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 164.1, 161.6, 148.3, 130.6, 130.5, 130.4, 130.0, 129.9, 128.8, 128.3, 125.7, 119.4, 116.2, 116.0, 53.5.

1-(2-Methylbenzyl)-4-phenyl-1H-1,2,3-triazole (7u) \[15\]

\[
\begin{align*}
\text{F} & \quad \text{N} \quad \text{N} \\
& \quad \text{N} \quad \text{N}
\end{align*}
\]

95% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.78-7.80 (m, 2H), 7.54 (s, 1H), 7.37-7.41 (m, 2H), 7.28-7.33 (m, 2H), 7.20-7.26 (m, 3H), 5.59 (s, 2H), 2.31 (s, 3H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 148.1, 137.1, 132.6, 131.2, 130.6, 129.5, 129.3, 128.9, 128.2, 126.8, 125.8, 119.4, 52.5, 19.1.

1-Benzyl-1H-1,2,3-triazole (7v) \[16\]

\[
\begin{align*}
\text{F} & \quad \text{N} \quad \text{N} \\
& \quad \text{N} \quad \text{N}
\end{align*}
\]

67% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.72 (s, 1H), 7.48 (s, 1H), 7.35-7.40 (m, 3H), 7.25-7.28 (m, 2H), 5.57 (s, 2H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 134.6, 134.2, 129.1, 128.8, 128.0, 123.3, 54.0.

1,4-Bis((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzene (7w) \[17\]

\[
\begin{align*}
\text{F} & \quad \text{N} \quad \text{N} \\
& \quad \text{N} \quad \text{N}
\end{align*}
\]

55% yield. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.62 (s, 2H), 7.83 (d, \(J = 7.2\) Hz, 4H), 7.32-7.45 (m, 10H), 5.64 (s, 4H). \(^13\)C NMR (100 MHz, DMSO-\(d_6\)) \(\delta\) 146.7, 136.0, 130.6, 128.9, 128.4, 127.9, 125.1, 121.6, 52.6.
1,3,5-Tris((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzene (7x) [18]

![Chemical Structure]

75% yield. 1H NMR (400 MHz, DMSO-d_6): δ 8.61 (s, 3H), 7.81 (d, $J = 7.6$ Hz, 6H), 7.42 (t, $J = 6.8$ Hz, 6H), 7.31-7.34 (m, 6H), 5.66 (s, 6H). 13C NMR (100 MHz, DMSO-d_6) δ 146.7, 137.3, 130.6, 128.9, 127.9, 127.2, 125.2, 121.6, 52.6.

References

2333-2336.

1437-1443.

Copies of 1H NMR and 13C NMR spectra

1-Benzyl-4-phenyl-1H-1,2,3-triazole (7a)
1-Benzyl-4-(p-tolyl)-1H-1,2,3-triazole (7b)
I-Benzyl-4-(4-ethylphenyl)-1H-1,2,3-triazole (7c)
1-Benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (7d)
1-Benzyl-4-(4-(pentyloxy)phenyl)-1H-1,2,3-triazole (7e)
1-Benzyl-4-(m-tolyl)-1H-1,2,3-triazole (7f)
I-Benzyl-4-(4-fluorophenyl)-1H-1,2,3-triazole (7g)
1-Benzyl-4-(3-fluorophenyl)-1H-1,2,3-triazole (7h)
1-Benzyl-4-(4-chlorophenyl)-1H-1,2,3-triazole (7i)
1-Benzyl-4-(4-bromophenyl)-1H-1,2,3-triazole (7j)
1-Benzyl-4-cyclopropyl-1H-1,2,3-triazole (7k)
1-Benzyl-4-cyclohexyl-1H-1,2,3-triazole (7l)
1-Benzyl-4-(cyclohex-1-en-1-yl)-1H-1,2,3-triazole (7m)
2-(1-Benzyl-1H-1,2,3-triazol-4-yl)propan-2-ol (7n)
I-Benzyl-4-pentyl-1H-1,2,3-triazole (7o)
1-(4-Methylbenzyl)-4-phenyl-1H-1,2,3-triazole (7p)
1-(4-Bromobenzyl)-4-phenyl-1H-1,2,3-triazole (7q)
1-(4-Chlorobenzyl)-4-phenyl-1H-1,2,3-triazole (7r)
1-(4-Nitrobenzyl)-4-phenyl-1H-1,2,3-triazole (7s)
1-(4-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole (7t)
1-(2-Methylbenzyl)-4-phenyl-1H-1,2,3-triazole (7u)
1-Benzyl-1H-1,2,3-triazole (7v)
1,4-Bis((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzene (7w)
1,3,5-Tris((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzene (7x)