Cu-MoS$_2$-ITO based hybrid structures for catalysis of hydrazine oxidation

Sajjad Hussaina,b, Kamran Akbarc, Dhanasekaran Vikramana,b, Muhmmad Arslan shehzada,b, Seung Ho Jungc, Yongho Seoa,b, and Jongwan Jung*a,b

a Graphene Research Institute, Sejong University, Seoul 143-747, Republic of Korea

b Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul 143-747, Republic of Korea

c Centre for Biotechnology Research in UBITA (CBRU), Dept. of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.

Figure S1. Raman mapping analysis were performed over an area of 30 µm × 30 µm of 2 nm thikness MoS$_2$ film (sputtered for 1 minute). (a) E$_{2g}^1$ mode mapping image is appeared at 382-384 cm$^{-1}$; (b) A$_1g$ mode mapping image is appeared at 404.5 - 406.5 cm$^{-1}$; (c) The measured frequencies difference (Δk) are in the range of 20 – 22 cm$^{-1}$.

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015
Figure S2. Cyclic voltammetry measurements of the Cu/MoS$_2$ (2 nm)/ITO hybrid.
Figure S3. Chronoamperometric measurement in 75 mM NaOH with 0.1 mM hydrazine hydrate at -0.4 V (a) Cu/MoS$_2$/ITO hybrid (Black line); (b) Cu/ITO hybrid (Red line).