Supporting Information

CuSO₄-D-glucose an inexpensive and eco-efficient catalytic system: direct access to diverse quinolines through modified Friedländer approach involving S_NAr/reduction/annulation cascade in one-pot

Namrata Anand, Tanmoy Chanda, Suvajit Koley, Sushobhan Chowdhury and Maya Shankar Singh*

Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005, India

Table of contents

<table>
<thead>
<tr>
<th>Table of contents</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General procedure</td>
<td>2</td>
</tr>
<tr>
<td>2. Preparation and characterization of compounds</td>
<td>2-11</td>
</tr>
<tr>
<td>3. References</td>
<td>12</td>
</tr>
<tr>
<td>4. Copies of 1H and 13C NMR spectra</td>
<td>13-38</td>
</tr>
</tbody>
</table>
Experimental Section

1. General Experimental Details

1H and 13C NMR spectra were recorded at 300 and 75 MHz, respectively. Chemical shift (δ) values are given in parts per million (ppm) with reference to tetramethylsilane (TMS) as the internal standard. Coupling constant (J) values are given in Hertz (Hz). The IR spectra were recorded on Varian 3100 FT-IR spectrophotometer. Melting points were determined with Buchi B-540 melting point apparatus and are uncorrected. Commercially obtained reagents were used after further purification when needed. All the reactions were monitored by TLC with silica gel coated plates. Column chromatography was carried out whenever needed, using silica gel of 100/200 mesh. Mixture of hexane/ethyl acetate in appropriate proportion (determined by TLC analysis) was used as eluent.

2. a. General procedure for the synthesis of compound 3

A mixture of 2-bromobenzaldehyde/2-bromoacetophenone 1 (1 mmol), NaN$_3$ (2 mmol) and cyclic/acyclic ketones 2 (1.1 mmol) in H$_2$O + EtOH (3:2, 5 mL) was placed in a 50 mL round bottom flask. To a stirring solution of above mixture added CuSO$_4$ (0.3 mmol), D-glucose (0.3 mmol), L-proline (0.2 mmol) and KOH (1 mmol). The reaction mixture was allowed to stir at 90 °C for 3-10 h. After completion of reaction (monitored on TLC), solvent was removed under reduced pressure and extracted with ethyl acetate. The combined organic layer was dried over anhydrous sodium sulphate, filtered and the solvent was removed under reduced pressure. The crude residue thus obtained was purified by column chromatography to give the desired quinolines 3.
2. b. Characterization of Compounds 3

3-Acetyl-2-methyl quinoline (3aa):
Pale yellow solid, mp 74-75 °C; IR (KBr) cm⁻¹: 3053, 1788, 1624, 1579, 1456, 818 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.48 (s, 1H, ArH), 8.05 (d, J = 8.4 Hz, 1H, ArH), 7.87-7.76 (m, 2H, ArH), 7.57-7.52 (m, 1H, ArH), 2.91 (s, 3H, COCH₃) 2.72 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 199.9, 157.5, 138.2, 138.1, 131.6, 131.1, 128.5, 128.2, 126.6, 125.5, 29.2, 25.6.

Phenyl(2-phenylquinolin-3-yl)methanone (3ab):
Yellow solid, mp 135-137 °C; IR (KBr) cm⁻¹: 3163, 2960, 1756, 1684, 1562 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.23-8.15 (m, 5H, ArH), 8.00 (d, J = 6.9 Hz, 1H, ArH), 7.89-7.81 (m, 2H, ArH), 7.75-7.70 (m, 1H, ArH), 7.55-7.43 (m, 6H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ: 175.7, 157.3, 148.2, 139.6 (2C), 136.7, 132.4, 129.6, 129.2 (2C), 128.8 (3C), 128.6 (3C), 127.4 (2C), 127.1 (2C), 126.2, 118.9.

3,4-Dihydroacridin-1(2H)-one (3ac):
White solid, mp 103-105 °C; IR (KBr) cm⁻¹: 3463, 2926, 1737, 1452, 1230, 835 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.85 (s, 1H, ArH), 8.06 (d, J = 8.4 Hz, 1H, ArH), 7.94 (d, J = 8.1 Hz, 1H, ArH), 7.83-7.78 (m, 1H, ArH), 7.57 (t, J = 7.2 Hz, 1H, ArH), 3.34 (t, J = 6.0 Hz, 2H, CH₂), 2.82 (t, J = 6.0 Hz, 2H, CH₂), 2.32 (dd, J₁ = 6.0 Hz, J₂ = 12.6 Hz, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ: 197.8, 161.9, 137.1, 132.3, 129.7, 128.4, 126.7, 126.6, 126.2, 39.0, 33.3, 21.7.
3,3-Dimethyl-3,4-dihydroacridin-1(2H)-one (3ad)\(^1\): White solid, mp 116-118 °C; IR (KBr) cm\(^{-1}\): 3062, 1768, 1594, 1488, 1231 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 8.82 (s, 1H, ArH), 8.06 (d, \(J = 8.7\) Hz, 1H, ArH), 7.94 (d, \(J = 8.1\) Hz, 1H, ArH), 7.82-7.77 (m, 1H, ArH), 7.57-7.52 (m, 1H, ArH), 3.20 (s, 2H, CH\(_2\)), 2.65 (s, 2H, CH\(_2\)), 1.15 (s, 6H, 2xCH\(_3\)); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 197.9, 160.7, 149.9, 136.4, 132.1, 129.7, 128.5, 126.6 (2C), 125.2, 52.4, 47.1, 32.7, 28.3(2C).

7-Methoxy-3,3-dimethyl-3,4-dihydroacridin-1(2H)-one (3bd)\(^3\): Yellow solid, mp 98-100 °C; IR (KBr) cm\(^{-1}\): 3062, 1768, 1594, 1488, 1231 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 8.73 (s, 1H, ArH), 7.97 (d, \(J = 9.0\) Hz, 1H, ArH), 7.47-7.43 (m, 1H, ArH), 7.167 (s, 1H, ArH), 3.93 (s, 3H, OCH\(_3\)), 3.16 (s, 2H, CH\(_2\)), 2.63 (s, 2H, CH\(_2\)), 1.14 (s, 6H, 2xCH\(_3\)); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 198.1, 158.2, 157.7, 146.1, 135.0, 129.8 (2C), 127.7, 125.3, 106.3, 55.6, 52.4, 46.7, 32.8, 28.3(2C).

3-Acetyl-2-methyl-4-phenyl quinoline (3ca)\(^4\): Yellow solid, mp 112-114 °C; IR (KBr) cm\(^{-1}\): 3053, 1788, 1624, 1579, 1456, 818 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 8.08 (d, \(J = 8.4\) Hz, 1H, ArH), 7.72-7.67 (m, 1H, ArH), 7.62 (d, \(J = 8.4\) Hz, 1H, ArH), 7.49-7.44 (m, 3H, ArH), 7.42-7.34 (m, 3H, ArH), 2.70 (s, 3H, CH\(_3\)), 2.00 (s, 3H, CH\(_3\)); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 205.5, 153.3, 147.3, 143.7, 135.0, 134.6, 129.9, 129.8 (2C), 128.8, 128.7, 128.5
9-Phenyl-3,4-dihydroacridin-1(2H)-one (3cc): Pale yellow solid, mp 153-156 °C; IR (KBr) cm⁻¹: 3407, 3048, 2924, 1737, 1498, 1230, 749 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.08 (d, J = 8.4 Hz, 1H, ArH), 7.78 (m, 1H, ArH), 7.50-7.37 (m, 5H, ArH), 7.19-7.16 (m, 2H, ArH), 3.40 (t, J = 6.3 Hz, 2H, CH₂), 2.72 (t, J = 6.3 Hz, 2H, CH₂), 2.29 (dd, J₁ = 6.6 Hz, J₂ = 12.6 Hz, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ: 197.9, 162.2, 151.4, 148.5, 137.5, 131.7, 128.4 (2C), 128.1, 128.0 (2C), 127.9, 127.5 (2C), 126.4, 123.8, 40.6, 34.5, 21.3.

2,3-Dihydro-1H-cyclopenta[b]quinoline (3ae): White solid, mp 55-57 °C; IR (KBr) cm⁻¹: 3053, 1646, 1562, 1212 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.02 (d, J = 8.4 Hz, 1H, ArH), 7.70 (s, 1H, ArH), 7.67-7.64 (m, 1H, ArH), 7.60-7.55 (m, 1H, ArH), 7.43-7.38 (m, 1H, ArH), 3.14 (t, J = 7.5 Hz, 2H, CH₂), 3.02 (t, J = 7.2 Hz, 2H, CH₂), 2.19-2.11 (dd, J₁ = 7.5 Hz, J₂ = 15.0 Hz, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ: 157.6, 147.2, 135.3, 130.0, 128.3, 128.2, 128.0, 127.1, 125.2, 34.3, 30.2, 23.3.

1,2,3,4-Tetrahydroacridine (3af): White solid, mp 85-87 °C; IR (KBr) cm⁻¹: 3058, 1624, 1557, 1453, 1214 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 7.97 (d, J = 8.4 Hz, 1H, ArH), 7.70 (s, 1H, ArH), 7.67-7.64 (m, 1H, ArH), 7.60-7.55 (m, 1H, ArH), 7.42-7.37 (m, 1H, ArH), 3.13 (t, 23.3.
J = 6.3 Hz, 2H, CH$_2$), 2.96 (t, J = 6.3 Hz, 2H, CH$_2$), 1.99-1.95 (m, 2H, CH$_2$), 1.88-1.84 (m, 2H, CH$_2$); 13C NMR (75 MHz, CDCl$_3$) δ: 159.1, 146.4, 134.8, 130.8, 128.3, 128.1, 127.0, 126.7, 125.3, 33.4, 29.1, 23.1, 22.7.

5,6-Dihydrobenzo[a]acridine (3ag): Yellow solid, mp 63-65 °C; IR (KBr) cm$^{-1}$: 3417, 2929, 1498, 1278, 1033, 789 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ: 8.58 (d, J = 7.5 Hz, 1H, ArH), 8.13 (d, J = 8.4 Hz, 1H, ArH), 7.84 (s, 1H, ArH), 7.69-7.59 (m, 2H, ArH), 7.45-7.31 (m, 3H, ArH), 7.24 (d, J = 7.2 Hz, 1H, ArH), 3.08-3.04 (m, 2H, CH$_2$), 2.97-2.93 (m, 2H, CH$_2$); 13C NMR (75 MHz, CDCl$_3$) δ: 153.2, 147.5, 139.3, 134.6, 133.6, 130.4, 129.5, 129.3, 128.5, 127.8, 127.7, 127.2, 126.8, 126.0, 125.9, 28.7, 28.3.

7-Methoxy-2,3-dihydro-1H-cyclopenta[b]quinoline (3be): White solid, mp 97-99 °C; IR (KBr) cm$^{-1}$: 3407, 3048, 2924, 1595, 1498, 1230, 749 cm$^{-1}$; 1H NMR (300 MHz, CDCl$_3$) δ: 7.91 (d, J = 9.3 Hz, 1H, ArH), 7.77 (s, 1H, ArH), 7.28-7.24 (m, 1H, ArH), 7.00 (d, J = 2.7 Hz, 1H, ArH), 3.90 (s, 3H, OCH$_3$), 3.24 (t, J = 7.5 Hz, 2H, CH$_2$), 3.14-3.02 (m, 2H, 2xCH$_2$), 2.23-2.13 (m, 2H, CH$_2$); 13C NMR (75 MHz, CDCl$_3$) δ: 165.2, 157.0, 143.3, 135.9, 129.7, 129.3, 128.2, 120.4, 105.5, 55.4, 34.2, 30.5, 23.6.
9-Phenyl-2,3-dihydro-1-cyclopenta[b]quinoline (3ce): Yellow solid, mp 133-135 °C; IR (KBr) cm⁻¹: 3053, 1625, 1586, 1230, 1033, 836 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.09 (d, J = 8.4 Hz, 1H, ArH), 7.63 (m, 2H, ArH), 7.51-7.45 (m, 3H, ArH), 7.37-7.34 (m, 3H, ArH), 3.24 (t, J = 7.5 Hz, 2H, CH₂), 2.90 (t, J = 7.2 Hz, 2H, CH₂), 2.21-2.11 (m, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ: 167.3, 147.7, 142.8, 136.7, 133.6, 129.2 (2C), 128.6, 128.4, 128.2, 127.9 (2C), 126.2, 125.6, 125.5, 35.1, 30.3, 23.5.

2-Phenylquinoline (3ah): White solid, mp 85-87 °C; IR (KBr) cm⁻¹: 3056, 1612, 1598, 1557, 1478 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.21-8.14 (m, 3H, ArH), 7.88-7.80 (m, 2H, ArH), 7.74-7.69 (m, 1H, ArH), 7.55-7.43 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ: 157.3, 148.2, 139.6, 129.6, 129.2 (2C), 128.8 (2C), 127.5 (2C), 127.4, 127.1, 126.2, 118.9.

2-(2-Chlorophenyl)quinoline (3ai): White solid, mp 72-75 °C; IR (KBr) cm⁻¹: 3063, 1614, 1574, 1512, 1423 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.20-8.17 (m, 2H, ArH), 8.13-8.08 (m, 2H, ArH), 7.81-7.69 (m, 2H, ArH), 7.54-7.45 (m, 3H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ: 155.9, 148.1, 137.9, 136.9, 135.5, 129.9, 129.8, 128.9 (2C), 128.7 (2C), 127.4, 127.1, 126.4, 118.6.
2-(2-Chlorophenyl)quinoline (3aj): White solid, mp 65-67 °C; IR (KBr) cm\(^{-1}\): 3025, 2915, 1664, 1574, 1497, 1431, 815 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ: 8.24-8.16 (m, 3H, ArH), 8.03-7.97 (m, 1H, ArH), 7.85-7.71 (m, 3H, ArH), 7.56-7.51 (m, 2H, ArH); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) δ: 155.7, 137.0, 134.9, 132.6, 130.8, 130.2, 129.9, 129.7, 129.3, 128.5, 127.7, 127.4, 126.6, 125.6, 118.6.

2-(4-Chlorophenyl)quinoline (3ak): White solid, mp 110-113 °C; IR (KBr) cm\(^{-1}\): 3065, 1610, 1553, 1525, 1412 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ: 8.20-8.08 (m, 4H, ArH), 7.81-7.69 (m, 3H, ArH), 7.54-7.46 (3H, ArH); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) δ: 155.9, 148.1, 138.0, 136.9, 135.5, 129.7, 129.6, 128.9 (2C), 128.7 (2C), 127.4, 127.1, 126.4, 118.4.

2-p-Tolylquinoline (3al): White solid, mp 80-82 °C; IR (KBr) cm\(^{-1}\): 3422, 2915, 1668, 1618, 1596, 1497, 815, 788 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ: 8.15 (d, J = 8.4 Hz, 2H, ArH), 8.06 (d, J = 8.1 Hz, 2H, ArH), 7.83-7.68 (m, 3H, ArH), 7.49-7.47 (m, 1H, ArH), 7.32 (d, J = 7.8 Hz, 2H, ArH), 2.41 (s, 3H, CH\(_3\)); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) δ: 157.2, 148.2, 139.3, 136.8, 136.5, 129.6 (2C), 129.4 (2C), 127.3 (3C), 127.0, 126.0, 118.7, 21.2.
2-(3-Methoxyphenyl)quinoline (3am): Yellow oil, IR (Neat) cm⁻¹: 3152, 1604, 1563, 1498 cm⁻¹; \(^1^H\) NMR (300 MHz, CDCl₃) δ: 8.17 (d, \(J = 8.4\) Hz, 1H, ArH), 8.10 (d, \(J = 8.7\) Hz, 1H, ArH), 7.78-7.65 (m, 5H, ArH), 7.47-7.35 (m, 2H, ArH), 6.99 (d, \(J = 8.1\) Hz, 1H, ArH), 3.86 (s, 3H, OCH₃); \(^1^3^C\) NMR (75 MHz, CDCl₃) δ: 160.0, 156.8, 148.0, 140.9, 136.5, 129.6, 129.5, 129.4, 127.3, 127.1, 126.1, 119.8, 118.8, 115.2, 112.6, 55.2.

2-(4-Methoxyphenyl)quinoline (3an): White solid, mp 117-120 ºC; IR (KBr) cm⁻¹: 3039, 2921, 2840, 1604, 1499, 1251, 1029, 818 cm⁻¹; \(^1^H\) NMR (300 MHz, CDCl₃) δ: 8.14-8.11 (m, 4H, ArH), 7.80-7.75 (m, 2H, ArH), 7.71-7.65 (m, 1H, ArH), 7.49-7.44 (m, 1H, ArH), 7.03 (d, \(J = 8.7\) Hz, 2H, ArH), 3.85 (s, 3H, OCH₃); \(^1^3^C\) NMR (75 MHz, CDCl₃) δ: 160.7, 156.8, 148.2, 136.5, 132.1, 129.5, 129.4, 128.8, 127.3, 126.8, 125.8, 118.4, 114.1 (2C), 55.3.

2-(Naphthalen-2-yl)quinoline (3ao): White solid, mp 163-165 ºC; IR (KBr) cm⁻¹: 3058, 1622, 1567 cm⁻¹; \(^1^H\) NMR (300 MHz, CDCl₃) δ: 8.59 (s, 1H, ArH), 8.37 (d, \(J = 8.7\) Hz, 1H, ArH), 8.22 (d, \(J = 8.4\) Hz, 2H, ArH), 8.00-7.96 (m, 3H, ArH), 7.89-7.86 (m, 1H, ArH), 7.82 (d, \(J = 8.1\) Hz, 1H, ArH), 7.75-7.70 (m, 1H, ArH), 7.53-7.49 (m, 2H, ArH); \(^1^3^C\) NMR (75 MHz, CDCl₃) δ: 157.1, 148.3, 136.7, 133.8, 133.4, 129.6, 128.9, 128.7 (2C), 128.5, 127.6, 127.4, 127.2, 127.1, 126.6, 126.2 (2C), 125.0, 119.0.
2-(Furan-2-yl)quinoline (3ap)\(^6\): White solid, mp 90-92 °C; IR (KBr) cm\(^{-1}\): 3152, 1618, 1523 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 8.15-8.12 (m, 2H, ArH), 7.81-7.61 (m, 4H, ArH), 7.47 (t, \(J = 7.5\) Hz, 1H, ArH), 7.22-7.21 (m, 1H, ArH), 6.57 (bs, 1H, ArH); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 153.6, 148.9, 148.0, 144.0, 136.6, 129.8, 129.3, 127.5, 127.1, 126.1, 117.4, 112.1, 110.0.

2-(Thiophen-2-yl)quinoline (3aq)\(^6\): White solid, mp 125-128 °C; IR (KBr) cm\(^{-1}\): 3101, 3054, 1624, 1578, 1223 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 8.11-8.06 (m, 2H, ArH), 7.77-7.65 (m, 4H, ArH), 7.48-7.43 (m, 2H, ArH), 7.15-7.12 (m, 1H, ArH); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 152.2, 148.0, 145.3, 136.5, 129.7, 129.2, 128.5, 128.0, 127.4, 127.1, 126.0, 125.7, 117.5.

2-(Pyridin-3-yl)quinoline (3ar)\(^{10}\): White solid, mp 93-95 °C; IR (KBr) cm\(^{-1}\): 3059, 2924, 1599, 1095, 787 cm\(^{-1}\); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 8.51 (d, \(J = 7.8\) Hz, 1H, ArH), 8.25 (d, \(J = 8.7\) Hz, 1H, ArH), 8.18 (d, \(J = 8.4\) Hz, 1H, ArH), 7.86-7.71 (m, 4H, ArH), 7.56-7.47 (m, 3H, ArH); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 154.5, 150.0, 148.6, 148.2, 137.0 (2C), 134.8, 129.9, 129.6, 127.4, 127.2, 126.7 (2C), 118.4.
2,4-Diphenylquinoline (3ch): White solid, mp 112-115 °C; IR (KBr) cm⁻¹: 3423, 3086, 2955, 1589, 1095, 846 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 7.81 (d, J = 7.2 Hz, 4H, ArH), 7.67-7.56 (m, 4H, ArH), 7.51-7.38 (m 5H, ArH), 7.35-7.31 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ: 163.1, 140.5, 137.5, 136.2, 136.0, 133.6, 133.0, 132.3, 131.8, 131.0, 130.0, 129.9, 129.0, 128.8, 128.5, 128.2, 128.1, 127.1, 119.4, 118.5, 118.5.

3-Methyl-2-phenylquinoline (3as): Yellow oil; IR (Neat) cm⁻¹: 3052, 1618, 1553, 1431, 1097, 756 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.13 (d, J = 8.4 Hz, 1H, ArH), 7.96 (s, 1H, ArH), 7.74 (d, J = 8.1 Hz, 1H, ArH), 7.65-7.56 (m, 3H, ArH), 7.46-7.40 (m, 4H, ArH), 2.43 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ: 160.4, 146.5, 140.8, 136.6, 129.2, 129.0, 128.7 (2C), 128.6, 128.1 (2C), 128.0, 127.5, 126.6, 126.2, 20.5.

3-Ethyl-2-phenylquinoline (3at): Yellow oil. IR (Neat) cm⁻¹: 3048, 2924, 1595, 1432, 749 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ: 8.14 (d, J = 8.4 Hz, 1H, ArH), 8.01 (s, 1H, ArH), 7.79 (d, J = 7.8 Hz, 1H, ArH), 7.66-7.61 (m, 1H, ArH), 7.54-7.52 (m, 2H, ArH), 7.48-7.41 (m, 4H, ArH), 2.81-2.73 (m, 2H, CH₂), 1.19 (t, J = 7.8 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ: 160.5, 146.2, 140.8, 135.1, 134.8, 129.1, 128.7, 128.6, 128.1, 127.9, 127.6, 126.8, 126.2, 25.9, 14.6.
3. References

1H NMR of 3aa

13C NMR of 3aa
1H NMR of 3ab

13C NMR of 3ab
1H NMR of 3ac

13C NMR of 3ac
1H NMR of 3ad

13C NMR of 3ad
1H NMR of 3bd

13C NMR of 3bd
1H NMR of 3ca

13C NMR of 3ca
1H NMR of 3cc

13C NMR of 3cc
1H NMR of 3ae

13C NMR of 3ae
1H NMR of 3af

13C NMR of 3af
1H NMR of 3ag

13C NMR of 3ag
1H NMR of 3be

13C NMR of 3be
1H NMR of 3ce

13C NMR of 3ce
1H NMR of 3ah

13C NMR of 3ah
1H NMR of 3ai

13C NMR of 3ai
^{1}H NMR of 3aj

^{13}C NMR of 3aj
1H NMR of 3ak

13C NMR of 3ak
\(^1\)H NMR of 3al

\(^{13}\)C NMR of 3al
1H NMR of 3am

13C NMR of 3am
1H NMR of 3an

13C NMR of 3an
^{1}H NMR of 3ao

^{13}C NMR of 3ao
1H NMR of 3ap

13C NMR of 3ap
1H NMR of 3aq

13C NMR of 3aq
1H NMR of 3ar

13C NMR of 3ar
\(^1\)H NMR of 3ch

\(^13\)C NMR of 3ch
1H NMR of 3as

13C NMR of 3as
1H NMR of 3at

13C NMR of 3at