Supporting Information

Colorimetric and fluorogenic signaling of fluoride ions by diketopyrrolopyrrole–based chemosensor

Xiaofeng Yang, Gege Zhang, Yexin Li, Zheng Liu, Xiaoqian Gong, Bin Gao, Guangyou Zhang, Yu Cui* and Guoxin Sun*

CONTENTS:
General information
Fig. S1. 1H NMR spectrum of 3--S3
Fig. S2. 13C NMR spectrum of 3--S3
Fig. S3. 1H NMR spectrum of 2---S4
Fig. S4. 13C NMR spectrum of 2---S4
Fig. S5. 1H NMR spectrum of 1 in DMSO–d_6--S5
Fig. S6. 13C NMR spectrum of 1 in DMSO–d_6--S5
Fig. S7. HRMS–ESI spectra of 1--S6
Fig. S8. 1H–1H cosygpsw spectroscopy of 1 in DMSO–d_6--------------------------------S6
Fig. S9. 1H–13C hsqcgp spectroscopy of 1 in DMSO–d_6------------------------------S7
Fig. S10. (a) Comparison of partial 1H NMR spectra of compounds 1 (in CDCl$_3$) and 2 (in DMSO–d_6). (b) Partial 1H–1H COSY and (c) 1H–13C HSQC NMR spectrum of compound 1 (in DMSO–d_6)---------------------S8
Fig. S11. Job plot for sensor 1 with fluoride ion---S9
Fig. S12. Plot of association constant of sensor 1 with fluoride ion----------------------S10
Fig. S13. The limit of detection of sensitivity of sensor 1 for fluoride ion----------------S11
Fig. S14. Time–dependent fluorescence changes of sensor 1 in the presence of F$^-$-----------S12
Fig. S15. (a) UV–vis absorption and (b) fluorescent spectra of sensor 1 (1 × 10$^{-5}$ M) to 0–90 equiv. fluoride ions in DMSO. Inset was enlarged spectra as 0–2 equiv. of F$^-$ was added--S13
Fig. S16. (a) UV–vis absorption and (b) fluorescent spectra of sensor 1 (1 × 10$^{-5}$ M) to various amounts of OH$^-$ (as Bu$_4$N$^+$ salts)---S14
Fig. S17. Partial 1H NMR titration spectra of sensor 1 (4.7 × 10$^{-3}$ M) upon addition of increasing amounts of fluoride (TBAF) ion (0–5 equiv.) and F$^-$ alone (top) in DMSO–d_6---S15
Fig. S18. Partial 19F NMR titration spectra of sensor 1 (4.7 × 10$^{-3}$ M) upon addition of increasing amounts of fluoride (TBAF) ion (0–5 equiv.) and F$^-$ alone in top in DMSO–d_6--S16
Fig. S19. Quenching curve between sensor 1 and fluoride ion--------------------------------S17
Fig. S20. The emission spectra (λ$_{ex}$ = 505 nm) of sensor 1 (1 × 10$^{-5}$ M) in DMSO in the presence of different concentrations of OH$^-$ followed by the addition of 75 equiv. of fluoride anion in DMSO--S18
Fig. S21. UV–vis absorption spectra of 1 (1 × 10$^{-5}$ M) after addition of 75 equiv. of F$^-$ then 75 equiv. of various anions respectively---S18
Fig. S22. Optimized geometries of sensor 1 and 1–2F$^-$ complexes at the B3LYP/6–31G* level of theory. The selected bond distances (Å) of the corresponding species are shown----------------------------------S19
Experimental Section

Determination of quantum yield

Fluorescence quantum yield of sensor 1 was determined in DMSO solution by using rhodamine B solution ($\Phi_f = 0.36$, 0.2 µM H$_2$O) as the reference [1]. The quantum yield was calculated using following equation:

$$\Phi_u = \left[\frac{(A_u F_u n_u^2)}{(A_s F_s n_s^0)^2} \right] \Phi_s.$$

Where A_s and A_u were the absorbance of the reference and sample solution at the reference excitation wavelength, F_s and F_u were the corresponding integrated fluorescence, n and n_0 were the refractive indexes of the solvents for the sample and reference solutions. Absorbance of samples and references at their respective excitation wavelengths was controlled to be lower than 0.05.
Fig. S1. 1H NMR spectrum of 3 (CDCl$_3$, 400 MHz)

Fig. S2. 13C NMR spectrum of 3 (CDCl$_3$, 100 MHz)
Fig. S3. 1H NMR spectrum of 2 (CDCl$_3$, 400 MHz)

Fig. S4. 13C NMR spectrum of 2 (CDCl$_3$, 100 MHz)
Fig. S5. 1H NMR spectrum of 1 (DMSO-d_6, 400 MHz)

Fig. S6. 13C NMR spectrum of 1 (DMSO-d_6, 100 MHz)
Fig. S7. HRMS–ESI spectra of 1

Fig. S8. 1H–1H COSY NMR spectrum of 1 (DMSO–d6)
Fig. S9. 1H–1C HSQC NMR spectrum of 1 (DMSO–d$_6$).
Fig S10. (a) Comparison of partial 1H NMR spectra of compounds 1 (in CDCl$_3$) and 2 (in DMSO–d$_6$). (b) Partial 1H–1H COSY NMR spectrum of compound 1 (in DMSO–d$_6$). (c) Partial 1H–13C HSQC NMR spectrum of compound 1 (in DMSO–d$_6$).

Fig. S10 showed the comparison of 1H NMR spectra of compounds 1 (in CDCl$_3$) and 2 (in DMSO–d$_6$). 1H–1H COSY (in DMSO–d$_6$) and 1H–13C HSQC NMR (in DMSO–d$_6$) spectrum of 1. In 1H NMR, compound 2 showed a signal at 10.09 ppm which was recognized as the aldehyde proton. However, this signal disappeared and six new signals developed in compound 1 (Fig. S10a). All protons in 1H NMR spectrum of compound 1 were identified based on the coupling constants, peak integration, and cross–peak correlations observed between the resonances in 1H–1H COSY and 1H–13C HSQC spectra (Fig. S10b–c, respectively). In 1H NMR spectrum of 1, the doublet resonance at 7.79 ppm which was identified as H_F–type aryl proton showed cross–peak correlation with triplet resonance at 7.14 ppm in 1H–1H COSY spectrum which was identified as H_F–type aryl proton. The triplet resonance at 7.14 ppm which was identified as H_F–type aryl proton showed cross–peak correlation with triplet resonance at 7.32 ppm and doublet resonance at 7.79 ppm in COSY spectrum which were indentified as H_F–type and H_F–type aryl protons, respectively. The H_F–type resonance at 7.32 ppm showed cross–peak correlation with doublet resonance at 7.46 ppm and triplet resonance at 7.14 ppm in COSY spectrum which were indentified as H_F–type and H_F–type aryl protons, respectively. The doublet resonance at 8.04 ppm which was identified as H_F–type meso–aryl proton showed cross–peak correlation with doublet resonance at 7.87 ppm in 1H–1H COSY spectrum which was indentified as H_F–type meso–aryl proton. The signals at 12.56 ppm and 8.22 ppm (which were indentified as H_F–type and H_F–type protons, respectively) in 1H NMR spectrum of 1 showed no cross–peak correlation in 1H–1H COSY spectrum (Fig. S10b). To assign these two signals of 1, a 1H–13C HSQC NMR spectrum was measured. As shown in Fig. 1c, the signal at 8.22 ppm in 1H NMR spectrum of 1 which was indentified as H_F–type proton showed cross–peak correlation with the signal at 130.2 ppm which was identified as C_f–type carbon of hydrazone (CH=N–NH–) in 1H–13C HSQC spectrum. And the signal at 12.56 ppm in 1H NMR spectrum of 1 which was recognized as H_F–type proton showed no cross–peak correlation in 1H–13C HSQC spectra (Fig. S10c). From above analysis, the signal at 12.56 ppm in 1H NMR spectrum of 1 was recognized as H_F–type proton of hydrazone N–H adjacent to C=N bond (CH=N–NH–). Additionally, the aryl protons also identified similarly based on cross–peak correlations in 1H–13C HSQC spectra. The signal at 122.1 ppm which was assigned as C_f–type aryl carbon showed cross–peak correlation with a triplet at 7.79 ppm corresponding to H_F–type proton. The signal at 122.4 ppm which was assigned as C_f–type aryl carbon showed cross–peak correlation with triplet resonance at 7.14 ppm corresponding to H_F–type proton. The signal at 126.6 ppm which was assigned as C_F–type aryl carbon showed cross–peak correlation with a triplet at 7.32 ppm corresponding to H_F–type proton. The signals at 127.0 ppm and 130.0 ppm (which were assigned as C_f–type and C_f–type aryl carbon, respectively) showed cross–peak correlation with two doublet resonance at 7.87 ppm and 8.04 ppm corresponding to H_F–type and H_F–type protons, respectively. The signal at 128.7 ppm which was assigned as C_f–type aryl carbon showed cross–peak correlation with a doublet resonance at 7.46 ppm corresponding to H_F–type proton. Thus, 1D and 2D NMR spectroscopy were very helpful in deducing the molecular structure of compound 1.
Fig. S11. Job’s plot for the evolution of binding stoichiometry between 1 and F⁻ ion in DMSO solution. The total concentration of [F⁻] and [1] was 1.0×10^{-4} M.
Fig. S12. Benesi–Hildebrand plot of sensor 1 (1.0 × 10^{-5} M) using 1:2 stoichiometry for association between sensor 1 and fluoride ion. $\lambda_{ex} = 505$ nm.
Fig. S13. The linear dynamic fluorescence response for the titration of sensor 1 with F⁻ to determine the limits of detection (LOD). The LOD was calculated using the formula $3\sigma/k$, where σ = standard deviation of blank (10 samples) and k = the slope of linear calibration curve.
Fig. S14. Time–dependent fluorescence changes of sensor 1 \((1 \times 10^{-5} \text{ M})\) in the presence of 75 equiv. of F\(^-\) in DMSO. \(\lambda_{ex} = 505\ \text{nm}\).
Fig. S15. (a) UV–vis absorption spectra of sensor 1 (1 × 10⁻⁵ M) to 0–75 equiv. fluoride ions in DMSO. Inset was enlarged spectra as 0–2 equiv. of F⁻ was added. (b) Fluorescent spectra of sensor 1 (1 × 10⁻⁵ M) to 0–25 equiv. fluoride ions in DMSO. Inset was enlarged spectra as 0–2 equiv. of F⁻ was added. λₑₓ = 505 nm.
Fig. S16. (a) UV–vis absorption spectra of sensor 1 (1 × 10⁻⁵ M) to various amounts of OH⁻ (as Bu₄N⁺ salts). (b) Fluorescent absorption spectra of sensor 1 (1 × 10⁻⁵ M) to various amounts of OH⁻ (as Bu₄N⁺ salts). \(\lambda_{ex} = 505 \text{ nm} \).
Fig. S17. Partial 1H NMR titration spectra of sensor 1 (4.7×10^{-3} M) upon addition of increasing amounts of fluoride (TBAF) ion (0–5 equiv.) and F$^-$ alone (top) in DMSO–d_6.
Fig. S18. Partial 19F NMR titration spectra of sensor 1 (4.7 x 10$^{-3}$ M) upon addition of increasing amounts of fluoride (TBAF) ion (0–5 equiv.) and F$^-$ alone (top) in DMSO-d_6.
The quenching constant was calculated from the spectral titration data by the equation [2]:

\[
\frac{1}{I_0-I} = \frac{1}{I_0} + \frac{K_D}{I_0[F]}
\]

Where, \(I_0\) was the fluorescence intensity of sensor, \(I\) the fluorescence intensity obtained with fluoride ion, \(K_D\) the quenching constant, \([F]\) the concentration of fluoride ion added. Linear fitting of the titration profiles resulted in a good linearity (correlation coefficient was over 0.99) (Fig. S19, Supporting information) and the quenching constant was calculated to be \(1.7 \times 10^{-3} \text{ M}^{-1}\) for 1.

Fig. S19. Quenching curve between sensor 1 and fluoride ion. \(\lambda_{ex} = 505\) nm.
Fig. S20. The emission spectra ($\lambda_{ex} = 505\ \text{nm}$) of sensor $1\ (1 \times 10^{-5}\ \text{M})$ in DMSO in the presence of different concentrations of OH^- followed by the addition of 75 equiv. of fluoride anion in DMSO.

Fig. S21. UV–vis absorption spectra of $1\ (1 \times 10^{-5}\ \text{M})$ after addition of 75 equiv. of F^- then 75 equiv. of various anions respectively.
Fig. S22. Optimized geometries of sensor 1 and 1–2F⁻ complexes at the B3LYP/6–31G* level of theory. The selected bond distances (Å) of the corresponding species are shown.

References
