Electronic Supporting Information for

Fluorinated Polyhedral Oligomeric Silsesquioxane

Xiaobai Wang,† Qun Ye,† Jing Song,† Ching Mui Cho,† Chaobin He,‡ Jianwei Xu†,*

† Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Republic of Singapore 117602
‡ Department of Materials Science & Engineering, National University of Singapore, 5 Engineering Drive 2, Republic of Singapore 117576

jw-xu@imre.a-star.edu.sg

1. Instrumentation

1H, 13C NMR, 29Si nuclear magnetic resonance (NMR) spectra were recorded on a Bruker DRX 400 MHz spectrometer in CDCl$_3$ at room temperature. Spectrometer operating frequencies were 400.13 MHz (1H), 100.61 MHz (13C), and 79.46 MHz (29Si). Tetramethylsilane was used as an internal standard for 1H, 13C, and external standard for 29Si NMR spectra. 19F NMR spectra (operating frequencies: 276.47 MHz) were recorded on AV400 MHz, and instrument default calibration (CFCl$_3$) was used. Thermogravimetric analysis (TGA) was performed in a Perkin-Elmer thermogravimetric analyzer (TGA 7) in nitrogen or in air at a heating rate of 20 °C/min. Differential scanning calorimetry (DSC) experiments were studied on a TA instrument DSC 2920 under a heating and cooling rate of 10 °C/min in nitrogen. Elemental analysis was conducted on a Perkin-Elmer 240C elemental analyzer for C, H, and S determination at the Chemical and Molecular Analysis Center, Department of Chemistry, National University of Singapore.

Spin coating for water contact angle was conducted on Rame-Hart Contact angle goniometer, with 5 wt.% of FluoroPOSS in PMMA solution (10 mg/mL in CHCl$_3$).

Atomic Force Microscopy (AFM) experiments: FluoroPOSS was dissolved in mr-I PMMA (bought from Micro Resist Technology GmbH) at a concentration of 0.3 mg/mL and 1 mg/mL. The rotation speed during spin coating was set 2000 rpm and last for 30s. Nanotribology experiments were performed by a Nanoscope III scanning probe microscopy (Veeco-Digital Instruments (DI), Santa Barbara). Commercially available V shaped Si$_3$N$_4$ cantilevers (DI) were used. Each cantilever was calibrated after a given experiment by measuring the thermal excitation of the tip to compute its spring constant. Tapping mode AFM scans was performed in air using a non-coated silicon tip with a spring constant of 10 N/m~20N/m (Nanosensors, Wetzlar, Germany). Features on the nanometer scale were imaged on a minimum of three different areas on the sample.
2. NMR spectra

Figure S1: 1H NMR of compound 2a in CDCl$_3$ at room temperature.
Figure S2: 1H NMR of compound 2b in CDCl$_3$ at room temperature.
Figure S3: 1H NMR of compound 2c in CDCl$_3$ at room temperature.
Figure S4: 1H NMR of compound 2d in CDCl$_3$ at room temperature.
Figure S5: 1H NMR of compound 2e in CDCl$_3$ at room temperature.
Figure S6: 1H NMR of compound 3a in CDCl$_3$ at room temperature.
Figure S7: 1H NMR of compound 3b in CDCl$_3$ at room temperature.
Figure S8: 1H NMR of compound 3c in CDCl$_3$ at room temperature.
Figure S9: 1H NMR of compound 3d in CDCl$_3$ at room temperature.
Figure S10: 1H NMR of compound 3e in CDCl$_3$ at room temperature.
Figure S11: 13C NMR of compound 3a in CDCl$_3$ at room temperature.
Figure S12: 13C NMR of compound 3b in CDCl$_3$ at room temperature.
Figure S13: 13C NMR of compound $3c$ in CDCl$_3$ at room temperature.
Figure S14: 13C NMR of compound 3d in CDCl₃ at room temperature.
Figure S15: 13C NMR of compound 3e in CDCl$_3$ at room temperature.
Figure S16: 29Si NMR of compound 3a in CDCl$_3$ at room temperature.
Figure S17: ^{29}Si NMR of compound 3b in CDCl$_3$ at room temperature.
Figure S18: ^{29}Si NMR of compound 3e in CDCl$_3$ at room temperature.
Figure S19: ^{29}Si NMR of compound 3d in CDCl$_3$ at room temperature.
Figure S20: ^{29}Si NMR of compound 3e in CDCl$_3$ at room temperature.
Figure S21: 19F NMR of compound 3a in CDCl$_3$ at room temperature.
Figure S22: 19F NMR of compound 3b in CDCl$_3$ at room temperature.
Figure S23: 19F NMR of compound 3c in CDCl$_3$ at room temperature.
Figure S24: 19F NMR of compound 3d in CDCl$_3$ at room temperature.
Figure S25: 19F NMR of compound 3e in CDCl$_3$ at room temperature.