Supplementary Information for:

Novel double-cathode configuration to improve cycling stability of lithium-sulfur battery

Chao Wu, Lixua Yuan*, Zhen Li, Ziqi Yi, Yanrong Li, Rui Zeng, Wei Zhang, Yunhui Huang*

Key Laboratory for Advanced Battery Materials and System (MOE), School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China. Tel./fax: +86 2787558421 (Yunhui Huang). Email: huangyh@mail.hust.edu.cn (Yunhui Huang), yuanlixia@mail.hust.edu.cn (Lixia Yuan).

Fig. S1 SEM images of (a) CMK-3 purchased and (b) MiPCS synthesized.

Fig. S2 XRD patterns of pristine S, CMK-3, S/CMK-3, MiPCS and S/MiPCS.
Fig. S3 Thermo-gravimetric analysis (TGA) of (a) S/CMK-3 and (b) S/MiPCS.

Fig. S4 Cycling performance of the S/MiPCS cell at 0.1C and 0.5C at 1.0–3.0 V.

Fig. S5 Electrolyte of (a) S/MiPCS and (b) S/CMK-3 cathodes collected from cycled cells at 0.2C between 1–3 V after 3 cycles. (c) Dissembled cells of S/MiPCS and S/CMK-3.

Three S/CMK-3 cells and S/MiPCS cells were dissembled to collected electrolyte for considering different sulfur loading. Both of them were washed with 2 ml DME, and 1.5 ml was stored in a transparent 5 ml glass bottle.
Fig. S6 Cycling performance comparison of the PureS cathode cell and DCC-PureS.

Table S1 Comparison of specific capacity of S/CMK-3 cathode, S/MiPCS cathode and DCC.

<table>
<thead>
<tr>
<th></th>
<th>S/CMK-3 cathode</th>
<th>S/MiPCS cathode</th>
<th>DCC(S/CMK-3@S/MiPCS) cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass specific capacity (mAh/g) (0.5C)</td>
<td>400</td>
<td>190</td>
<td>320</td>
</tr>
<tr>
<td>Area specific capacity (mAh/cm²) (0.5C)</td>
<td>1.15</td>
<td>0.29</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Gravimetric specific capacity is based on the mass of S/C, super P and binder.