Supporting information

New insights into the mesophase transformation of ethane-bridged PMOs by the influence of different counterions under basic conditions

Feng Lin,1,2 Xiangyan Meng,1 Elena Kukueva,3 Myrjam Mertens,4 Sabine Van Doorslaer,2 Sara Bals,3 and Pegie Cool1*

1. Laboratory of Adsorption and Catalysis, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
2. Laboratory for Spectroscopy in Biophysics and Catalysis, Department of Physics, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
3. EMAT, Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
4. Flemish Institute for Technological Research, VITO, Boerentang 200, B-2400, Mol, Belgium

Corresponding Author
* Fax: +32 3 2652374; Tel: +32 3 2652355; E-mail: pegie.cool@uantwerpen.be
Figure S1. PMO synthesized with CTACL (cubic structure, $Pm3n$): HRTEM image acquired along the [001] direction and different diffraction patterns acquired along the indicated zone axes.
Figure S2. PMO synthesized with CTA(SO₄)₉₅, (cubic structure, Pm3n): HRTEM image acquired along the [001] direction and different diffraction patterns acquired along the indicated zone axes.
Figure S3. SEM images of ethane-bridged PMOs synthesized with a surfactant mixture CTABr/CTACl with different molar ratios: (a) CTACl:CTABr=4:6 and (b) CTACl:CTABr=6:4. (The blue circles point out the particles with 2-D hexagonal $p6mm$ mesophase, while the red circle point out the particles with cubic $Pm3n$ mesophase)
Figure S4. SEM images of the ethane-bridged PMOs synthesized with the assistance of different sodium salts in the presence of CTACl or CTABr as surfactant: (a) CTACl + NaNO$_3$, (b) CTABr + NaSCN, (c) CTACl + NaSCN, (d) CTACl + NaCl, and (e) CTABr + NaCl
Figure S5 EDX analysis of the as-synthesized ethane-bridged PMO materials prepared with different surfactant: (a) CTABr, (b) CTACl, and (c) CTA(SO$_4$)$_{1/2}$

Table S1 The content of the counterions in as-synthesized ethane-bridged PMO materials

<table>
<thead>
<tr>
<th>Weight</th>
<th>PMO-CTABr</th>
<th>PMO-CTACl</th>
<th>PMO-CTA(SO4)${1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (Br/Cl/S)</td>
<td>0.53%</td>
<td>1.10%</td>
<td>1.10%</td>
</tr>
</tbody>
</table>