Supporting Information

Ultrafast spray pyrolysis fabrication of nanophase ZnMn$_2$O$_4$ anode towards high-performance Li-ion batteries

Longhai Zhang,a Siqi Zhu,a Hui Cao,a Gang Pang,a Jingdong Lin,*b Linrui Hou*$_a$ and Changzhou Yuan,*a,c

a School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, 243002, P. R. China Email: ayuancz@163.com (C.Z. Yuan); houlr629@163.com (L.R. Hou)

b Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China Email: jdlin@xmu.edu.cn (J.D. Lin)

c Chinese Academy of Science (CAS) Key Laboratory of Materials for Energy Conversion, Hefei, 230026, P.R. China
Table S1 Atomic coordinates, isotropic thermal parameters and occupation numbers for the ZMO phase refined from X-ray powder diffraction data. Spinel-type structure in space group $I4_1$/amd (No. 141); cell parameters: $a = 5.7399$ (6) Å, $c = 9.2903$ (1) Å, $V = 306.08$ (8) Å3 and $Z = 4$; $R_{wp} = 9.16 \%$, $R_p = 7.31 \%$, $S = 1.91$.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>g</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>4a</td>
<td>0.839(9)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Zn</td>
<td>16h</td>
<td>0.849(1)</td>
<td>0.0</td>
<td>0.244(2)</td>
</tr>
<tr>
<td>O</td>
<td>16h</td>
<td>1.253(1)</td>
<td>0.0</td>
<td>0.225(3)</td>
</tr>
</tbody>
</table>
Fig. S1 XRD patterns of the (a) ZMO-AE and (b) ZMO-EG samples
Fig. S2 Low-magnification FESEM images of the as-obtained ZMO-W sample with different magnifications
Fig. S3 FESEM images of the (a, b) ZMO-AE and (c, d) ZMO-EG products
Fig. S4 (a) N$_2$ adsorption-desorption isotherms and (b) corresponding PSD data of the ZMO-AE sample
Fig. S5 (a) N$_2$ adsorption-desorption isotherms and (b) corresponding PSD data of the ZMO-EG sample
Fig. S6 Cycling performance (1.0 C) of the (a) ZMO-AE and (b) ZMO-EG products