Theoretical Studies of 3D-to-planar Structural Transition in Si$_n$Al$_{5-n}$+$^{+1.0, -1}$ (n=0-5) Clusters

Jinzhen Zhu1, Beizhou Wang1, Jianjun Liu1,*, Huanwen Chen2, Wenqing Zhang1

1State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

2Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, 330013, China.

* Corresponding email: jliu@mail.sic.ac.cn
Figure S1 B3LYP-Optimized geometries of Si$_n$Al$_{5-n}^+$ (n=0-5) clusters. The relative energies calculated at CCSD(T)/6-311+G(2d) level are shown in bracket. Bond length and relative energy are presented in the units of Å and kcal/mol.
Figure S2 B3LYP-Optimized geometries of Si$_n$Al$_{5-n}$ (n=0-5) clusters. The relative energies calculated at CCSD(T)/6-311+G(2d) level are shown in bracket. Bond length and relative energy are presented in the units of Å and kcal/mol.
Figure S3 B3LYP-Optimized geometries of Si$_n$Al$_{5-n}$ (n=0-5) clusters. The relative energies calculated at CCSD(T)/6-311+G(2d) level are shown in bracket. Bond length and relative energy are presented in the units of Å and kcal/mol.