Redox-active polyimide-polyether block copolymers as electrode materials for lithium batteries

Guiomar Hernández,a Nerea Casado,a Raphaël Coste,a,b Devaraj Shanmukaraj,c Laurent Rubatat,b Michel Armandc and David Mecerreyesa,d

a POLYMAT, University of the Basque Country UPV/EHU, Jose Mari Korta Center, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain; E-mail: david.mecerreyes@ehu.es
b UMR 5254 IPREM EPCP, Université de Pau et des Pays de l’Adour, Technopole Hélioparc, 2 av. Du Président Angot, 64053, Cedex 9 Pau, France.
c CIC EnergiGUNE, Alava Technology Park, C/Albert Einstein 48, 01510, Miñano, Álava, Spain.
d Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain.

Experimental

Rate performance of Naphthalene polyimide-b-PEO2000.

Rate performance of polyimide Naphthalene polyimide-b-PEO2000 was tested under current rates of 1Li+/5h and 1Li+/1h (Fig. S1). Discharge capacity at 1Li+/5h was 170 mAh·g⁻¹ whereas at 1Li+/1h it was 138 mAh·g⁻¹, capacity remained 81% at higher rates showing a good rate performance for the polyimide with higher PEO molecular weight.

Fig. S1 Discharge capacities of Naphthalene polyimide-b-PEO2000 under 1Li+/5h (□) and 1Li+/1h (Δ) current rates versus cycle number.