Supporting Information

Facile and Diverse Microwave-Assisted Synthesis of Secondary Propargylamines in Water Using CuCl/CuCl₂

Tran Thi Thu Trang, a,b Denis S. Ermolat’ev,*a Erik V. Van der Eycken*a

aLaboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
bDepartment of Chemistry, Hanoi National University of Education, Xuan Thuy 136, Hanoi, Vietnam

* Corresponding authors. Fax: +32 16327990 (E. V. Van der Eycken).

Email addresses: ermolatev@gmail.com (D. S. Ermolat’ev), erik.vandereycken@chem.kuleuven.be (E. V. Van der Eycken)

Table of contents for supporting information:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Remarks</td>
<td>2</td>
</tr>
<tr>
<td>Microwave Irradiation Experiments</td>
<td>2</td>
</tr>
<tr>
<td>General Procedure for the Preparation of Propargylamines</td>
<td>2</td>
</tr>
<tr>
<td>Spectroscopic data of Propargylamines</td>
<td>3</td>
</tr>
<tr>
<td>¹H NMR and ¹³C NMR spectra</td>
<td>10</td>
</tr>
</tbody>
</table>
General Remarks.

1H and 13C NMR spectra were recorded on 300 MHz instrument. The 1H chemical shifts are reported in ppm relative to tetramethylsilane. High–resolution mass spectra were recorded by using ion source temperature 150–250°C as required. High–resolution EI–mass spectra were performed with a resolution of 10000. For thin layer chromatography, analytical TLC plates SIL G/UV254 and 70–230 mesh silica gel were used. Reagents were used without further purification. Solvents like water, heptane and ethyl acetate were used after distillation.

Microwave Irradiation Experiments.

All microwave irradiation experiments were carried out in a dedicated CEM–Discover monomode microwave apparatus, operating at a frequency of 2.45GHz with continuous irradiation power from 0 to 100 W with utilization of the standard absorbance level of 100 W maximum power. The reactions were carried out in 10 mL glass tubes, sealed with Teflon septum and placed in the microwave cavity. The reaction was irradiated at a required ceiling temperature using maximum power for the stipulated time. Then it was cooled to ambient temperature with gas jet cooling.

General Procedure for the Preparation of Alkylsubstituted Propargylamines.

To a microwave vial equipped with magnetic stir bar was added amine (2.6 or 3.0 mmol), aldehyde (2.0 mmol), acetylene (3.2 mmol), CuCl (0.2 mmol), CuCl$_2$ (0.2 mmol) and water (3.0 mL). The microwave vial was flushed with argon. The reaction vessel was then sealed and irradiated in a cavity of CEM–Discover microwave reactor at 100 W for 25 min at a ceiling temperature of 110°C. The resulting reaction mixture was extracted with EtOAc (20mL). Organic phase was dried over anhydrous Na$_2$SO$_4$ and the solvent was removed under reduced pressure. The residue was then loaded directly onto a column and flashed on silica gel (10–15% EtOAc in heptane) to afford the product as a yellowish oil. The identity and purity of the products were confirmed by 1H, 13C NMR, and HRMS.
Spectroscopic data of Propargylamines.

\textit{N-(2-methoxyethyl)-1-(4-propylphenyl)undec-1-yn-3-amine (4a):}

\begin{center}
\includegraphics[width=0.2\textwidth]{structure1.png}
\end{center}

1H NMR (300 MHz, CDCl$_3$): δ 7.32 (d, $J = 7.91$ Hz, 2H), 7.09 (d, $J = 7.91$ Hz, 2H), 3.58 (m, 3H), 3.36 (s, 3H), 3.15 (m, 1H), 2.80 (m, 1H), 2.56 (m, 2H), 1.63 (m, 6H), 1.28 (m, 10H), 0.90 (m, 6H). 13C NMR (75.5 MHz, CDCl$_3$) δ 142.6, 131.6, 128.4, 120.7, 90.3, 83.9, 72.2, 58.7, 51.0, 47.0, 37.9, 36.2, 31.9, 29.6, 29.5, 29.3, 26.2, 24.4, 22.7, 14.1, 13.8. HRMS (EI) ([M+H]$^+$) Calcd. for C$_{23}$H$_{37}$NO: 344.2875, found 344.2884.

\textit{1-(4-Fluorophenyl)-N-isobutyl-4-methylpent-1-yn-3-amine (4b):}

\begin{center}
\includegraphics[width=0.2\textwidth]{structure2.png}
\end{center}

1H NMR (300 MHz, CDCl$_3$): δ 7.43 (m, 2H), 7.24 (m, 2H), 2.58 (brs, 1H), 2.51 (m, 1H), 2.38 (m, 1H), 1.85 (m, 1H), 1.66 (m, 1H), 1.01 (m, 6H), 0.88 (m, 6H). 13C NMR (75.5 MHz, CDCl$_3$) δ 162.8 (d, $J = 250.8$ Hz), 133.5, 129.3 (d, $J = 8.2$ Hz), 123.8 (d, $J = 3.84$ Hz), 115.4 (d, $J = 20.9$ Hz), 112.2 (d, J=15.9 Hz), 95.9, 95.81, 57.5, 56.0, 32.9, 28.5, 20.8, 20.6, 19.8, 18.0. HRMS (EI) ([M+H]$^+$) Calcd. for C$_{16}$H$_{23}$FN: 248.1736, found 248.1738.

\textit{1-(4-Fluorophenyl)-N-pentyloct-1-yn-3-amine (4c)}

\begin{center}
\includegraphics[width=0.2\textwidth]{structure3.png}
\end{center}

1H NMR (CDCl$_3$, 300 MHz): δ 7.38 (m, 2H), 7.38 (m, 2H), 6.98 (t, $J = 7.35$ Hz, 2H), 3.57 (m, 1H), 2.88 (m, 1H), 2.67 (m, 1H), 1.69 (m, 2H), 1.57-1.26 (br, 15H), 0.90 (8H). 13C NMR (75.5 MHz, CDCl$_3$): δ 163.9, 160.6, 133.5, 133.4, 119.6, 119.5, 115.6, 115.3, 90.9, 90.8, 82.6, 50.9, 47.6, 36.1, 31.7, 29.7, 29.6, 25.9, 22.6, 22.5, 14.1. HRMS (ESI) ([M]$^+$) Calcd. for C$_{19}$H$_{28}$FN: 289.2206, found 289.2218.
N-Benzyl-4-methyl-1-phenylpent-1-yn-3-amine (4d)

\[\text{Bn-NH} \quad \text{i-Pr} \equiv \text{Ph} \]

1H NMR (300 MHz, CDCl$_3$): δ 7.46–7.43 (m, 2H), 7.41–7.35 (m, 3H), 7.33–7.29 (m, 5H), 4.10 (d, $J = 12.99$ Hz, 1H), 3.89 (d, $J = 12.99$ Hz, 1H), 3.40 (t, $J = 5.46$ Hz, 1H), 2.00–1.89 (m, 1H), 1.06 (d, $J = 6.78$ Hz, 6H). 13C NMR (75.5 MHz, CDCl$_3$): δ 140.1, 131.6, 128.4, 128.3, 128.2, 127.8, 126.9, 123.5, 89.6, 84.6, 56.1, 51.7, 32.9, 19.8, 18.0. HRMS (ESI) ([M$^+$]) Calcd. for C$_{19}$H$_{21}$N: 263.1674, found 263.1677.

N-tert-butyl-5-methyl-1-phenylhex-1-yn-3-amine (4e)

\[\text{t-Bu-NH} \quad \text{i-Bu} \equiv \text{Ph} \]

1H NMR (300 MHz, CDCl$_3$): δ 7.39–7.36 (m, 2H), 7.20–7.27 (m, 3H), 3.63 (q, $J = 6.78$, 8.46 Hz, 1H), 1.97–1.88 (m, 1H), 1.64–1.54 (m, 1H), 1.49–1.44 (m, 1H), 1.20 (s, 9H), 0.95 (dd, $J = 189$, 6.6, 6H). 13C NMR (300 MHz, CDCl$_3$): δ 131.3, 128.1, 127.6, 123.8, 94.4, 82.4, 51.3, 47.8, 42.7, 29.9, 25.1, 22.9, 22.1. HRMS (ESI) ([M$^+$]) Calcd for C$_{17}$H$_{25}$N: 243.1987, found 243.1990.

N-(1-(4-hexylphenyl)hex-1-yn-3-yl)heptan-1-amine (4f)

\[\text{NH} \quad \equiv \text{Ph} \quad \equiv \text{NH} \quad \equiv \text{Ph} \]

1H NMR (300 MHz, CDCl$_3$) δ 7.35 (d, $J = 8.0$ Hz, 2H), 7.11 (d, $J = 8.0$ Hz, 2H), 3.57 (m, 1H), 2.89 (m, 1H), 2.64 (m, 1H), 2.58 (m, 2H), 1.72-1.43 (m, 8H), 1.28 (br, 14H), 1.13 (brs, 1H), 0.96 (m, 3H), 0.88 (m, 6H). 13C NMR(75.5 MHz, CDCl$_3$) δ 142.9, 131.6, 128.3, 120.7, 90.7, 83.7, 50.7, 47.7, 38.5, 35.9, 31.9, 31.7, 31.3, 31.2, 30.2, 29.3, 28.9, 27.5, 22.7, 19.5, 14.1, 14.0. HRMS (EI) ([M+H$^+$]) Calcd for C$_{25}$H$_{42}$N: 356.3239, found 356.3245.

1-(4-Butylphenyl)-5-methyl-N-phenethylhex-1-yn-3-amine (4g):

\[\text{Phenethyl-NH} \quad \text{i-Bu} \equiv \text{4-BuPh} \]
N-benzyl-2-methyldec-5-yn-4-amine (4h):

\[
\begin{align*}
\delta & = 7.33-7.05 \text{ (m, 9H)}, 3.61 \text{ (m, 1H)}, 3.26-3.16 \text{ (m, 1H)}, 3.01-2.76 \text{ (m, 3H)}, 2.58 \text{ (t, } J = 7.7 \text{ Hz, 2H}), 1.72-1.25 \text{ (m, 11H)}, 0.91 \text{ (t, } J = 7.2 \text{ Hz, 6H}). \\
\end{align*}
\]

\[
\begin{align*}
\delta & = 142.9, 140.0, 131.5, 128.8, 128.5, 128.3, 126.2, 120.5, 90.2, 83.9, 50.8, 48.6, 36.3, 35.8, 35.5, 33.4, 28.4, 22.5, 22.3, 14.0, 13.9. \\
\end{align*}
\]

HRMS (ESI) ([M] \text{ }^+ \text{) Calcd for } C_{25}H_{33}N: 347.2613, \text{ found 347.2615.}

N-benzyl-2-methylundec-5-yn-4-amine (4i):

\[
\begin{align*}
\delta & = 7.37-7.21 \text{ (m, 5H)}, 4.02 \text{ (d, } J = 12.81 \text{ Hz, 2H)}, 3.79 \text{ (d, } J = 12.81 \text{ Hz, 2H)}, 3.39 \text{ (m, 1H)}, 2.23 \text{ (m, 2H)}, 1.89 \text{ (m, 1H)}, 1.57-1.26 \text{ (m, 8H)}, 0.9 \text{ (m, 9H)}. \\
\end{align*}
\]

\[
\begin{align*}
\delta & = 140.5, 128.4, 128.3, 126.9, 83.8, 81.7, 51.4, 48.1, 45.7, 31.2, 25.3, 23.0, 22.2, 22.0, 18.5, 13.7. \\
\end{align*}
\]

HRMS (EI) ([M+H] \text{ }^+ \text{) Calcd for } C_{18}H_{28}N: 258.2143, \text{ found 258.2139.}

N-(4-methoxybenzyl)-4-methyl-1-phenylpent-1-yn-3-amine (4j):

\[
\begin{align*}
\delta & = 7.45 \text{ (m, 2H)}, 7.30 \text{ (m, 4H)}, 6.86 \text{ (d, } J = 8.6 \text{ Hz, 2H)}, 4.04 \text{ (d, } J = 12.8 \text{ Hz, 1H)}, 3.86-3.77 \text{ (m, 4H)}, 3.39 \text{ (d, } J = 5.53 \text{ Hz, 1H)}, 1.93 \text{ (m, 1H)}, 1.72 \text{ (br, 1H)}, 1.06 \text{ (d, } J = 6.87 \text{ Hz, 6H}). \\
\end{align*}
\]

\[
\begin{align*}
\delta & = 158.7, 132.3, 131.7, 129.6, 128.2, 127.8, \text{ etc.} \\
\end{align*}
\]
4-Methyl-N-phenethyl-1-phenylpent-1-yn-3-amine (4k):

\[
\text{Phenethyl} \xrightarrow{\text{NH}} \text{Ph}
\]

\(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta 7.40-7.19\) (m, 10H), 3.44 (d, \(J = 5.3\) Hz, 1H), 3.24-3.16 (m, 1H), 2.97-2.76 (m, 3H), 1.91 (m, 1H), 1.50 (br, 1H), 1.20 (m, 6H).
\(^{13}\)C NMR (75.5 MHz, CDCl\(_3\)): \(\delta 140.1, 131.7, 128.7, 128.4, 128.2, 126.1, 123.5, 89.6, 84.5, 57.1, 49.2, 36.4, 32.9, 19.9, 17.8\).

HRMS (ESI) ([M] +) Calcd for C\(_{20}\)H\(_{23}\)NO: 293.1780, found 293.1780.

1-Cyclohexyl-N-(3-methoxyphenethyl)-3-(4-methoxyphenyl)prop-2-yn-1-amine (4l):

\[
\text{p-MeOPhenethyl} \xrightarrow{\text{NH}} \text{PMP}
\]

\(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta 7.33\) (d, \(J = 8.6\) Hz, 2H), 7.20 (m, 1H), 6.94-6.73 (m, 5H), 3.85 (s, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.41 (d, \(J = 5.6\) Hz, 1H), 3.24-3.15 (m, 1H), 2.96-2.72 (m, 3H), 1.85-1.54 (m, 7H), 1.28-1.11 (m, 5H).
\(^{13}\)C NMR (75.5 MHz, CDCl\(_3\)): \(\delta 159.7, 159.2, 141.8, 133.0, 130.6, 129.4, 121.1, 115.7, 114.4, 113.8, 113.7, 111.5, 88.5, 84.3, 56.4, 55.3, 55.1, 49.0, 42.7, 36.4, 30.3, 28.6, 26.5, 26.3, 26.1. HRMS (ESI) ([M] +) Calcd for C\(_{25}\)H\(_{31}\)NO\(_2\): 377.2355, found 377.2361.

\(N\)-(1-(4-methoxyphenyl)-5-phenylpent-1-yn-3-yl)cyclobutanamine (4m):

\[
\text{Ph} \xrightarrow{\text{NH}} \text{4-MeOPh}
\]

\(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta 7.36\) (d, \(J = 8.6\) Hz, 2H), 7.30-7.11 (m, 5H), 6.8 (d, \(J = 8.6\) Hz, 2H), 3.80 (s, 3H), 3.58-3.48 (m, 1H), 2.97-2.68 (m, 3H), 2.44-2.16 (m, 2H), 2.04-1.60 (m, 5H).
\(^{13}\)C NMR (75.5 MHz, CDCl\(_3\)): \(\delta 159.4, 141.7, 132.9, 128.5, 128.4, 125.9, 115.4, 113.9, 89.4, 83.7, 55.3, 52.7, 48.4, 37.8, 32.4, 32.1, 31.2, 15.3. HRMS (ESI) ([M] +) Calcd for C\(_{22}\)H\(_{25}\)NO: 319.1936, found 319.1939.

\(N\)-(1-cyclohexyl-3-phenylprop-2-ynyl)cyclohexanamine (4n):
\[\text{c-Hexyl} \quad \text{N} \quad \text{Ph} \]

\(^1\text{H NMR (CDCl}_3, 300 \text{ MHz): } \delta 7.42 (m, 2H), 7.29 (m, 3H), 3.52 (d, J = 5.4 \text{ Hz, 1H}), 2.84-2.75 (m, 1H), 2.0-1.54 (m, 11H), 1.40-0.95 (m, 11H). \(^{13}\text{C NMR (75.5 MHz, CDCl}_3): \delta 131.7, 128.2, 127.7, 123.8, 90.8, 84.0, 54.4, 52.9, 43.0, 34.5, 32.5, 30.5, 28.3, 26.6, 26.3, 26.2, 26.1, 25.2, 24.8. HRMS (ESI) ([M \text{ }^+]) \text{ Calcd for } C_{21}H_{29}N: 295.2300, \text{ found 295.2301.} \]

\(N-(1\text{-cyclohexyl-3-phenylprop-2-ynyl)cyclooctanamine (4o):} \)

\[\text{c-Octyl} \quad \text{N} \quad \text{Ph} \]

\(^1\text{H NMR (CDCl}_3, 300 \text{ MHz): } \delta 7.40 (m, 2H), 7.28 (m, 3H), 3.46 (d, J = 5.4 \text{ Hz, 1H}), 3.1 (m, 1H), 1.87-0.85 (m, 34H). \(^{13}\text{C NMR (75.5 MHz, CDCl}_3): \delta 131, 128.2, 127.7, 123.8, 90.8, 84.0, 55.3, 53.5, 43.0, 34.5, 30.8, 30.5, 28.6, 27.6, 27.2, 26.6, 26.3, 26.1, 25.8, 24.3, 23.9. \text{ HRMS (ESI) ([M }^+]) \text{ Calcd for } C_{23}H_{33}N: 323.2613, \text{ found 323.2616.} \]

\(N-(1\text{-cyclohexyl-3-(2-fluorophenyl)prop-2-ynyl)cyclohexanamine (4p)}\)

\[\text{c-Hexyl} \quad \text{N} \quad \text{Ph} \quad \text{F} \]

\(^1\text{H NMR (300 MHz, CDCl}_3) \delta 7.41 (m, 1H), 7.23 (m, 1H), 7.07 (m, 2H), 3.56 (d, J =4.89 \text{ Hz, 1H}), 2.82 (m, 1H), 1.99-1.68 (m, 12H), 1.36-1.15 (m, 9H), 1.04 (m, 1H). \(^{13}\text{C NMR (75,5 MHz, CDCl}_3) \delta 162.9 (d, J =250.8 \text{ Hz}), 133.5, 129.4 (d, J =7.7 \text{ Hz}),123.8, 115.4 (d, J =20.9 \text{ Hz}), 112.1 (d, J =15.9 \text{ Hz}), 95.8, 95.7, 54.6, 53.1, 42.6, 34.2, 32.2, 30.5, 29.2, 28.1, 26.5, 26.3, 25.6, 25.2, 24.8. \text{ HRMS (EI) ([M+H }^+]) \text{ Calcd for } C_{21}H_{29}FN: 314.2206, \text{ found 314.2209.} \]

\(N-(1\text{-p-tolyloct-2-ynyl)cyclopentanamine (4q):} \)

\[\text{c-Cyclohexyl} \quad \text{N} \quad \text{Pentyl} \]

\(^1\text{H NMR (300 MHz, CDCl}_3) \delta 7.41 (m, 1H), 7.23 (m, 1H), 7.07 (m, 2H), 3.56 (d, J =4.89 Hz, 1H), 2.82 (m, 1H), 1.99-1.68 (m, 12H), 1.36-1.15 (m, 9H), 1.04 (m, 1H). \(^{13}\text{C NMR (75,5 MHz, CDCl}_3) \delta 162.9 (d, J =250.8 \text{ Hz}), 133.5, 129.4 (d, J =7.7 \text{ Hz}),123.8, 115.4 (d, J =20.9 \text{ Hz}), 112.1 (d, J =15.9 \text{ Hz}), 95.8, 95.7, 54.6, 53.1, 42.6, 34.2, 32.2, 30.5, 29.2, 28.1, 26.5, 26.3, 25.6, 25.2, 24.8. \text{ HRMS (EI) ([M+H }^+]) \text{ Calcd for } C_{21}H_{29}FN: 314.2206, \text{ found 314.2209.} \]
1H NMR (CDCl$_3$, 300 MHz): δ 7.41 (d, $J = 7.9$ Hz, 2H), 7.14 (d, $J = 7.7$ Hz, 2H), 4.60 (br, 1H), 3.32 (m, 1H), 2.44 (br, 1H), 2.32 (s, 3H), 2.30 (t, $J = 6.3$ Hz, 2H), 1.87-1.23 (m, 15H), 0.89 (t, $J = 6.5$ Hz, 3H). 13C NMR (75.5 MHz, CDCl$_3$): δ 129.9, 129.8, 129.1, 127.7, 85.9, 79.6, 57.1, 52.7, 32.9, 32.4, 31.1, 28.5, 24.1, 22.2, 21.1, 18.9, 14.0. HRMS (ESI) ([M]+) Calcd for C$_{20}$H$_{29}$N: 283.2300, found 283.2309.

N-(1-cyclohexyl-3-(4-pentylphenyl)prop-2-ynyl)cyclopentanamine (4r):

1H NMR (300 MHz, CDCl$_3$) δ 7.37 (m, 2H), 7.11 (m, 2H), 3.43 (m, 1H), 3.38 (d, $J = 5.3$ Hz, 1H), 1.92-1.52 (m, 13H), 1.40-1.19 (m, 12H), 0.88 (m, 3H). 13C NMR (75.5 MHz, CDCl$_3$) δ 142.8, 132.1, 131.6, 128.3, 120.9, 90.1, 84.1, 57.6, 55.0, 43.1, 35.8, 34.0, 32.6, 31.4, 31.0, 30.9, 30.5, 28.5, 26.6, 26.4, 26.2, 24.2, 22.6, 14.1. HRMS (EI) ([M+H]+) Calcd for C$_{25}$H$_{38}$N: 352.2926, found 352.2922.

N–(5–methyl–1–phenylhex–1–yn–3–yl)cyclododecanamine (4s):

1H NMR (300 MHz, CDCl$_3$) δ 7.39 (d, $J = 3.51$ Hz, 2H), 7.38–7.26 (m, 3H), 3.69 (t, $J = 6.78$ Hz, 1H), 3.09 (bs, 1H), 2.01–1.92 (m, 1H), 1.71–1.64 (m, 1H), 1.58–1.52 (m, 2H), 1.43–1.30 (m, 24H), 0.95 (q, $J = 3.39$, 6.78 Hz, 6H). 13C NMR (300 MHz, CDCl$_3$): δ 131.5, 128.1, 127.7, 123.6, 92.0, 83.2, 51.6, 46.5, 45.8, 30.2, 29.2, 25.3, 24.6, 24.6, 24.1, 23.9, 23.8, 23.1, 22.7, 22.4, 22.1, 21.6, 20.5. HRMS (ESI) ([M]+) Calcd for C$_{25}$H$_{39}$N: 353.3083, found 353.3099.

1H NMR (300 MHz, CDCl$_3$) δ 7.42–7.39 (m, 2H), 7.30–7.27 (m, 3H), 3.67 (t, $J = 6.99$ Hz, 1H), 3.09–3.06 (m, 1H), 2.01–1.94(m, 1H), 1.89–1.79 (m, 3H), 1.54–1.36 (m, 12H), 0.95 (q, $J = 3.57$, 6.6, 6H). 13C NMR (300 MHz, CDCl$_3$): δ 131.6, 128.2, 127.7, 123.6, 91.7, 83.2, 56.3, 46.3, 45.9, 36.6, 33.2, 28.4, 28.1, 25.3, 24.6, 24.1, 23.1, 22.1. HRMS (ESI) ([M]$^+$) Calcd for C$_{21}$H$_{31}$N: 283.2300, found 283.2303.

N-(1-Phenyloct-1-yn-3-yl)cyclooctanamine (4u):

1H NMR (300 MHz, CDCl$_3$) δ 7.30 (m, 2H), 7.28 (m, 3H), 3.64 (m, 1H), 3.12 (m, 1H), 1.83–1.21 (m, 22H), 0.90 (t, $J = 6.7$ Hz, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 131.7, 128.2, 127.8, 123.7, 91.7, 83.4, 55.1, 48.0, 36.6, 34.5, 31.7, 30.9, 27.6, 27.2, 26.0, 25.9, 24.3, 24.0, 22.6, 14.1. HRMS (ESI) ([M]$^+$) C$_{22}$H$_{33}$N, calcd 311.2613, found: 311.2622.
1H NMR and 13C NMR spectra

1H NMR of N-(2-methoxyethyl)-1-(4-propylphenyl)undec-1-yn-3-amine (4a):

13C NMR of N-(2-methoxyethyl)-1-(4-propylphenyl)undec-1-yn-3-amine (4a):
1H NMR of 1-(4-Fluorophenyl)-N-isobutyl-4-methylpent-1-yn-3-amine(4b):

13C NMR of 1-(4-Fluorophenyl)-N-isobutyl-4-methylpent-1-yn-3-amine (4b):
1H NMR of 1-(4-Fluorophenyl)-N-pentyloct-1-yn-3-amine (4c)

13C NMR of 1-(4-Fluorophenyl)-N-pentyloct-1-yn-3-amine (4c)
1H and 13C NMR of N–Benzyl–4–methyl–1–phenylpent–1–yn–3–amine (4d)
1H and 13C NMR of N-tert-butyl-5-methyl-1-phenylhex-1-yn-3-amine (4e)
1H and 13C NMR of 1-(4-Butylphenyl)-5-methyl-N-phenethylhex-1-yn-3-amine (4g)
1H NMR of N-(1-(4-hexylphenyl)hex-1-yn-3-yl)heptan-1-amine (4f)

13C NMR of N-(1-(4-hexylphenyl)hex-1-yn-3-yl)heptan-1-amine (4g)
1H NMR of N-benzyl-2-methyldec-5-yn-4-amine (4h):

13C NMR of N-benzyl-2-methyldec-5-yn-4-amine (4h):
1H NMR of N-benzyl-2-methylundec-5-yn-4-amine (4i)

13C NMR of N-benzyl-2-methylundec-5-yn-4-amine (4i)
1H NMR and 13C of N-(4-methoxybenzyl)-4-methyl-1-phenylpent-1-yn-3-amine (4j):
1H NMR and 13C of 4-methyl-N-phenethyl-1-phenylpent-1-yn-3-amine (4k)
1H NMR and 13C of 1-Cyclohexyl-N-(3-methoxyphenethyl)-3-(4-methoxyphenyl)prop-2-yn-1-amine (4l)
1H NMR and 13C of N-(1-(4-methoxyphenyl)-5-phenylpent-1-yn-3-yl)cyclobutanamine (4m)
$^1\text{H NMR and } ^{13}\text{C of } \text{N-}(1\text{-cyclohexyl-3-phenylprop-2-ynyl)cyclohexanamine (4n)}$
1H NMR and 13C of N-(1-cyclohexyl-3-phenylprop-2-ynyl)cyclooctanamine (4o)
1H NMR of N-(1-cyclohexyl-3-(2-fluorophenyl)prop-2-ynyl)cyclohexanamine (4p)

13C NMR of N-(1-cyclohexyl-3-(2-fluorophenyl)prop-2-ynyl)cyclohexanamine (4p)
1H NMR and 13C of N-(1-p-tolyl-2-ynyl)cyclopentanamine (4q)
1H NMR of N-(1-cyclohexyl-3-(4-pentylphenyl)prop-2-ynyl)cyclopentanamine (4r)

13C NMR of N-(1-cyclohexyl-3-(4-pentylphenyl)prop-2-ynyl)cyclopentanamine (4r)
1H NMR and 13C of N-(5-methyl-1-phenylhex-1-yn-3-yl)cyclododecanamine (4s)

![NMR spectrum of N-(5-methyl-1-phenylhex-1-yn-3-yl)cyclododecanamine (4s)]

![Chemical structure of N-(5-methyl-1-phenylhex-1-yn-3-yl)cyclododecanamine (4s)]
1H NMR and 13C of N-(5-methyl-1-phenylhex-1-yn-3-yl)cycloheptanamine (4t)
1H NMR and 13C of N-(1-Phenylct-1-yn-3-yl)cyclooctanamine (4u)