Supporting Information for "Electrochemistry for generation

of renewable chemicals: Electrochemical conversion of levulinic acid"

Tatiane Regina dos Santos^{a,b}, Peter Nilges^a, Waldemar Sauter^a, Falk Harnisch^b, Uwe Schröder^{a*}

^a Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany,

^b Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany

*author of correspondence : e-mail: <u>uwe.schroeder@tu-bs.de</u>, phone: +49 5313918425; fax: 49 5313918424

S1. Results for primary reductive and oxidative conversions: Reduction of levulinic acid to valeric acid and γ-valerolactone and oxidation of levulinic acid to 2,7-octanedione, 4-hydroxy-2-butanone and 3-buten-2-one.

Entry	Route	Educt concentration	Electrode	E _{WE}	t	Electrolyte	Conversion	Se	lectivity	C	Coulombic efficiency
		[M]	material	[V]	[h]	solution	[%]		[%]		[%]
		LA					LA	gVL	VA		
1	I, II	0.05	Pb	-1.8	4	0.5 M H ₂ SO ₄	73.0	18.0	82.0		6.8
2	I, II	0.10	Pb	-1.8	4	KH ₂ PO ₄ /K ₂ HPO ₄					
3	I, II	0.10	Pb	-1.8	4	0.5 M H ₂ SO ₄	65.1	13.1	86.9		30.9
4	I, II	0.50	Pb	-1.8	4	0.5 M H ₂ SO ₄	71.6	18.4	81.6		56.4
5	I, II	0.75	Pb	-1.8	8	0.5 M H ₂ SO ₄	54.3	17.2	82.8		58.6
6	I, II	1.00	Pb	-1.8	4	0.5 M H ₂ SO ₄	77.9	13.9	86.1		65.4
7	I, II	0.50	Cu	-1.8	4	0.5 M H ₂ SO ₄	7.3	9.6	8.3		1.3
8	I, II	0.50	Fe	-1.8	4	0.5 M H ₂ SO ₄	19.9	7.8	9.6		0.5
9	I, II	0.50	Ni	-1.8	4	0.5 M H ₂ SO ₄	8.0	3.2	17.3		1.1
10	I, II	0.50	С	-1.8	4	0.5 M H ₂ SO ₄	39.0	69.0	0.0		18.0
11	I, II	0.50	Pb	-1.8	4	1.0 M NaOH	19.6	48.7	0.0		21.1
12	I, II	0.50	Fe	-1.8	4	1.0 M NaOH	24.5	74.5	0.0		18.5
		LA						2,7-OD	4H2B	MVK	
13	ш	1.00	Pt	5.0	7	Methanol, pH 5.5	60.0	47.0			86.2
14	Ш	1.00	Pt	5.0	7	H₂O, pH 5.5	74.0	27.0			5.0
15	IV	0.10	С	6.0	5	H_2O , 0.2 M NaOH	57.0		20.0		5.0
16	IV	0.10	С	1-3	5	H ₂ O, 0.1M NaOH	74.0			45.0	24.0
17	v	0.10	С	2-3	6.5	H ₂ O, 0.1 M H ₂ SO ₄	42.0			18.0	8.0

Table SI 1: Reactions conditions and main results for primary reductive and oxidative conversions.

Figure S1: Selectivity of the 3-buten-2-one formation as a function of the degree of levulinic acid conversion and of the used electrolyte at a carbon anode at E_{WE} = 3 V.

S2. Results for secondary electrochemical conversion steps: Electrochemical hydrogenation of 4-hydroxy-2-butanone to 1-butanol and oxidation of valeric acid.

Entry	Route	Educt	Electrode	E _{WE}	t	Electrolyte	Conversion		Selectivity		Coulombic
		concentration	material			solution					efficiency
		[M]		[V]	[h]		[%]		[%]		[%]
		4H2B					4H2B	1-BuOH	1,3BDO		
1	IX, X	0.08	Pb	-1.3	3.5	0.5 M H ₂ SO ₄	17.8	15.9	0.4		16.8
2	IX, X	0.08	Pb	-1.5	3.5	0.5 M H ₂ SO ₄	65.1	71.5	2.6		12.7
3	IX, X	0.08	Pb	-1.8	3.5	0.5 M H ₂ SO ₄	68.8	55.6	1.7		8.0
4	IX, X	1.00	Pb	-1.5	3.5	0.5 M H ₂ SO ₄	19.2	58.0	2.5		59.5
5	IX, X	0.08	Fe	-1.5	4	KH ₂ PO ₄ /K ₂ HPO ₄	23.9	0.0	23.1		2.1
6	IX, X	0.08	Fe	-1.8	4	KH ₂ PO ₄ /K ₂ HPO ₄	34.4	0.0	34.7		2.4
7	IX, X	0.08	Pb	-1.8	4	KH ₂ PO ₄ /K ₂ HPO ₄	9.8	19.3	0.7	0.7	2.1

Table SI 2: Reactions conditions and main results for secondary reductive conversions.

Entry	Educt	Electrode	E _{WE}	t	Electrolyte	Current	Conversion	Selectivity ^a	Coulombic
	concentration	material			solution	density			efficiency
	[M]		[V]	[h]		[%]	[%]	[%]	[%]
	VA					[mA/cm2]			
1	0.21	C _{sheet}	2.5	6	Water	10	90	12	
2	0.22	C _{sheet}	2.5	6	$H_2SO_4 0.5M$	10	98	19	
3	0.23	C_{sheet}	2.5	6	NaOH 0.25 M	10	98	18	
4	0.25	C _{sheet}	2.5	10	NaOH 0.25 M	5	56	18	
5	0.24	C _{sheet}	2.5	19	NaOH 0.25 M	1	35	22	
6	0.25	C_{sheet}	2.5	10	NaOH 0.75M	25	79	18	
7	0.25	C_{sheet}	2.5	10	NaOH 0.75M	10	52	4	
8	0.25	C_{sheet}	2.5	10	NaOH 0.75M	10	53	4	
					$NaHCO_3 0.75M$				
9	0.20	C_{sheet}	2.5	11	NaOH 0.75M	25	64	13	
					NaHCO ₃ 0.25M				
10	0.23	C_{sheet}	2.5	7	NaOH 0.75M	45	78	26	
					NaHCO ₃ 0.25M				
11	0.25	C_{sheet}	2.5	13	NaOH 0.75M	45	95	16	
					NaHCO ₃ 0.10M				

 Table SI 3:
 Reactions conditions and main results for primary reductive and oxidative conversions of the anodic oxidation of valeric acid at different

graphite electrodes

Continuation of Table SI 3

Entry	Educt	Electrode	E _{WE}	t	Electrolyte	Current	Conversion	Selectivity ^a	Coulombic
					solution	density			
	concentration	material							efficiency
	[M]		[V]	[h]		[%]	[%]	[%]	[%]
	VA					[mA/cm2]			
12	0.22	C_{sheet}	2.5	11	NaOH 0.25 M	7.5	83	13	
					NaClO ₄ 0.5 M				
13	0.22	C _{sheet}	2.5	11	NaOH 0.25 M	25	99	11	
					NaClO ₄ 0.5 M				
14	0.22	C_{sheet}	2.5	2	NaOH 0.25 M	45	77	7	
					NaClO ₄ 0.5 M				
15	0.21	C_{sheet}	2.5	2	NaOH 0.25 M	45	73	8	
					NaClO ₄ 1.0 M				
16	0.22	C _{sheet}	2.5	10	NaOH 0.25 M	5	72	10	
					Na ₂ SO ₄ 0.5M				
17	0.22	C _{felt}	2.5	2	NaOH 0.25 M	80	99	17	
18	0.22	C _{foil}	2.5	2	NaOH 0.25 M	80	92	16	
19	0.25	C _{sheet}	2.5	2	NaOH 0.25 M	80	98	16	
20	0.25	C _{sheet}	2.5	10	NaOH 0.35 M	10-25	93	13	
21	0.25	C _{sheet}	2.5	10	NaOH 0.35 M	2-5	55	15	
22	0.01	C _{sheet}	2.5	8	NaOH 10mM	10	90	18	
					NaClO ₄ 0.1 M				
23	0.04	C _{sheet}	2.5	12	NaOH 50mM	10	95	21	
					NaClO ₄ 0.1 M				
24	0.04	C_{sheet}	2.5	7	NaOH 50 mM	2.5	94	28	
25	0.04	C_{sheet}	2.5	7	NaOH 50 mM	10	99	26	

^a selectivity considering only the products of secondary carbenium ion (mainly 2-butanol, 1-butanal and acetone)

S3. **Energetic considerations**

i. Coulombic efficiency (CE) and Selectivity (S)

At the potential applied for the electrochemical decarboxylation reaction, side reactions like the solvent decomposition (e.g., the oxygen evolution or hydrogen evolution from water) take place, reducing the Coulombic efficiency of the (target) reactions.

$$Q_{applied} = n_{theoretical} \times z \times F$$
(1a)

$$Q_{applied} = i \times t$$
(1b)

$$n_{theoretical} = \frac{i \times t}{z \times F}$$
(2)

 $n_{experimental}$ is obtained from analytical methods (HPLC and GC-MS).

$CE - \frac{n_{experimental}}{1}$		
$CL = \frac{1}{n_{theoretical}}$	(3)	
$s - \frac{n_{experimental}}{s}$ of a prodcut		
$n_{theoretical of a product}$		(4)

ii. Energy for electrochemical upgrading:

The theoretically required electric energy to drive the reaction is defined as the product of cell voltage (U) and charge (Q): $E_{\text{electric}} = UQ$. The molar electric energy, $E_{\text{electric, molar}}$, can be calculated as $E_{\text{electric, molar}} = UzF$, with F being the Faraday constant and z being the number of transferred electron per molecule.

Since in our study all reactions were performed in half-cell experiments, the energy was calculated for the respective half-reaction considering the average working electrode potential vs. standard hydrogen electrode, SHE as U

Thus, the energy consumption in terms of molar energy can be calculated as depicted below: $z \times F \times U$ Fnorav

$$\frac{1}{CE} = \frac{1}{CE}$$
 (J mol⁻¹) (5a)

Considering the molar mass of products (M_P) the specific energy can be calculated.

Energy electrophysical surger diag =
$$\frac{z \times F \times U}{z \times F \times U}$$

 $\overline{CE \times M_P}$ (J kg⁻¹) (5b) $gy_{electrochemical upgrading}$

iii. Energy storage efficiency :

$$\overline{Energy_{storage\ efficiency}} = \frac{\Delta H_{LHV}}{Energy_{electrochemical\ upgrading}} \times 100$$
(%) (6)

Energy content of the products

Table SI 4 shows the energy content of the respectively obtained products, according the method of Boie for calculate the lower heating value H_{LHV} :

 $H_{LHV} = 34.8 \,\omega_{c} + 93.9 \,\omega_{H} - 10.8 \,\omega_{O} + 10.5 \,\omega_{S} + 6.3 \,\omega_{N} - 2.44 \,\omega_{H2O}$ (7);

(with the symbols representing the relative mass shares, ω , of the elements and water)

Table SI 4: Summary of the energy density value for the different oxidation products derived from lovulinic acid

levulinic aciu.								
	$H_{ m LHV}$							
	MJ kg-1							
levulinic acid	20.8							
2,7-octandione	30.4							
3-buten-2-one	29.5							
4-hydroxy-2-butanone	23.6							
n-octane	44.4							
1-butanol	36.0							

1,3-butanediol

25.2

								nieved ^b		theoretical maximum				
			energy density ^a (H _{LHV}) / kJ mol ⁻¹		∆ molar heating values	Z ^c e	average electrode potential	CE	molar electric energy	energy storage efficiency	average electrode potential	CE	molar electric energy	energy storage efficienc
					∕ kJ mol⁻¹		/ V	/ %	/ kJ mol ⁻¹	/%	/ V	/ %	/ kJ mol ⁻¹	/ %
			educt	product										
tion	Ш	levulinic acid $ ightarrow$ 2,7-octandione	2328	4323	-333	1	5.2	90	545	-61.13	2.5	100	241	-138
dat		levulinic acid \rightarrow 4-hydroxy-2-												
ŌXİ	IV	butanone	2328	2083	-245	2	2.7	10	10420	-2.35	2.5	100	482	-51
•	V	levulinic acid $ ightarrow$ 3-buten-2-one	2328	2067	-261	2	2.7	20	2171	-12.03	2.5	100	482	-54
	VII	Valeric acid \rightarrow n-octane	2691	5047	-335	1	3.7	40	830	-40.30	2.5	100	241	-139

Table SI 5: Summary of the energy density value for the different oxidation products derived from levulinic acid.

^a estimated according to Boie ⁸⁷, ^b achieved in this study, ^c number of electrons