Supplementary Information

Synthesis of fluorovinyl aryl ethers by a three-component reaction of gem-difluoroalkenes with arylboronic acids and oxygen

Mingjin Wang, Fang Liang, Yang Xiong and Song Cao*

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China

*Corresponding author: Tel: +86-21-64253452; fax: +86-21-64252603, E-mail address: scao@ecust.edu.cn

Table of contents

General experimental procedures P2

Preparation of 1,1-difluoroalkenes 1a–g and 1-aryl-2,2-difluoroethenes 1h–k P2

General procedure for the synthesis of 3aa–df and 3ha–kl P2

General procedure for the synthesis of 3ea–ga P2

Spectral and analytical data of compounds 3 P2

References P2

1H, 13C, 19F NMR and HRMS (EI) spectra of compounds 3 P9
General experimental procedures

All reagents were of analytical grade, and obtained from commercial suppliers and used without further purification. NMP and other solvents were dried by standard method prior to use. Melting points were measured in an open capillary using Büchi melting point B-540 apparatus and are uncorrected. 1H NMR and 13C NMR spectra were recorded on a 400 spectrometer (400 MHz for 1H and 100 MHz for 13C NMR, respectively) using TMS as internal standard. The 19F NMR spectra were obtained using a 400 spectrometer (376 MHz). CDCl$_3$ was used as the NMR solvent in all cases. High resolution mass spectra (HRMS) were recorded under electron impact conditions using a MicroMass GCT CA 055 instrument and recorded on a MicroMass LCTTM spectrometer. Silica gel (300–400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

Preparation of 1,1-difluoroalkenes 1a–g and 1-aryl-2,2-difluoroethenes 1h–k

The 1,1-difluoroalkenes (1a–g) were prepared according to the Hu’s reported procedure.1 The 1-aryl-2,2-difluoroethenes (1h–k) was prepared according to the reported procedure.2

General procedure for the synthesis of 3aa–df and 3ha–kl

To a solution of gem-difluoroalkenes (1a–d, 1h–k, 1.0 mmol) in NMP (2 mL) was added arylboronic acids (2.0 mmol) and K$_3$PO$_4$ (2.0 mmol, 424 mg) at room temperature. The mixture was stirred at 100 °C for 24 h under air atmosphere (monitored by TLC). After the completion of reaction, the reaction mixture was quenched with water (5 mL) and extracted with CH$_2$Cl$_2$ (3 × 10 mL). The combined organic layer was washed with water and brine, then dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel using n-hexane/EtOAc (100/1) as eluent to afford the pure target compounds 3aa–df and 3ha–kl.

General procedure for the synthesis of 3ea–ga

To a solution of gem-difluoroalkenes (1e–g, 1.0 mmol) in toluene (2 mL) was added phenylboronic acid 2a (2.0 mmol), Cs$_2$CO$_3$ (2.0 mmol, 652 mg), and Ni(acac)$_2$ (0.05 mmol, 13 mg) at room temperature. The mixture was stirred at 100 °C for 24 h under an oxygen atmosphere (balloon). After the completion of reaction, the reaction mixture was quenched with water (5 mL) and extracted with CH$_2$Cl$_2$ (3 × 10 mL). The combined organic layer was washed with water and brine, then dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel using n-hexane/EtOAc (100/1) as eluent to afford the pure target compounds 3ea–ga.

References

Spectral and analytical data of compounds 3

(2-Fluoro-2-phenoxyethene-1,1-diyl)dibenzene (3aa): White solid. Yield: 81%, mp 77.9–79.0 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.35–7.19 (m, 12H), 7.11–7.08 (m, 3H) ppm; \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 154.9 (d, \(J_{\text{CF}} = 2.7\) Hz), 151.0 (d, \(J_{\text{CF}} = 286.8\) Hz), 136.3 (d, \(J_{\text{CF}} = 4.1\) Hz), 136.2 (d, \(J_{\text{CF}} = 3.7\) Hz), 129.9 (d, \(J_{\text{CF}} = 4.0\) Hz), 129.8, 129.6 (d, \(J_{\text{CF}} = 3.2\) Hz), 128.3, 128.2, 127.3, 127.2, 124.1, 116.5, 106.1 (d, \(J_{\text{CF}} = 25.0\) Hz) ppm; \(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) −87.1 (s, 1F) ppm; HRMS (EI): calcd for C\(_{20}\)H\(_{15}\)FO [M]+: 290.1107, found: 290.1108.

(2-Fluoro-2-(p-tolyloxy)ethene-1,1-diyl)dibenzene (3ab): White solid. Yield: 69%, mp 70.8–72.4 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34–7.21 (m, 10H), 7.11 (d, \(J = 8.4\) Hz, 2H), 6.99 (d, \(J = 7.6\) Hz, 2H), 2.29 (s, 3H) ppm; \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 152.8 (d, \(J_{\text{CF}} = 2.5\) Hz), 151.2 (d, \(J_{\text{CF}} = 286.9\) Hz), 136.4 (d, \(J_{\text{CF}} = 4.0\) Hz), 136.3 (d, \(J_{\text{CF}} = 3.8\) Hz), 133.6, 130.3, 130.0 (d, \(J_{\text{CF}} = 4.0\) Hz), 129.6 (d, \(J_{\text{CF}} = 3.2\) Hz), 128.3, 128.2, 127.3, 127.2, 116.4, 105.7 (d, \(J_{\text{CF}} = 25.3\) Hz), 20.7 ppm; \(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) −87.0 (s, 1F) ppm; HRMS (EI): calcd for C\(_{21}\)H\(_{17}\)FO [M]+: 304.1263, found: 304.1262.

(2-Fluoro-2-(o-tolyloxy)ethene-1,1-diyl)dibenzene (3ac): White solid. Yield: 73%, mp 68.8–70.5 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.35–7.17 (m, 10H), 7.15–7.10 (m, 3H), 7.01–6.97 (m, 1H), 2.20 (s, 3H) ppm; \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 153.2 (d, \(J_{\text{CF}} = 2.3\) Hz), 151.3 (d, \(J_{\text{CF}} = 286.4\) Hz), 136.4 (d, \(J_{\text{CF}} = 4.1\) Hz), 136.3 (d, \(J_{\text{CF}} = 3.6\) Hz), 131.5, 130.0 (d, \(J_{\text{CF}} = 4.0\) Hz), 129.6 (d, \(J_{\text{CF}} = 3.1\) Hz), 128.3, 128.2, 127.5, 127.3, 127.1, 127.0, 124.0, 115.0, 105.5 (d, \(J_{\text{CF}} = 25.3\) Hz), 16.0 ppm; \(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) −85.9 (s, 1F) ppm; HRMS (EI): calcd for C\(_{21}\)H\(_{17}\)FO [M]+: 304.1263, found: 304.1262.

(2-Fluoro-2-(4-methoxyphenoxy)ethene-1,1-diyl)dibenzene (3ad): White solid. Yield: 65%, mp 67.6–69.1 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34–7.21 (m, 10H), 7.03–7.01 (m, 2H), 6.85–6.81 (m, 2H), 3.73 (s, 3H) ppm; \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 156.2, 151.5 (d, \(J_{\text{CF}} = 286.9\) Hz), 148.6 (d, \(J_{\text{CF}} = 2.3\) Hz), 136.4 (d, \(J_{\text{CF}} = 4.1\) Hz), 136.3 (d, \(J_{\text{CF}} = 3.7\) Hz), 130.0 (d, \(J_{\text{CF}} = 4.0\) Hz), 129.7 (d, \(J_{\text{CF}} = 3.2\) Hz), 128.3, 128.2, 127.2, 127.1, 117.7, 114.9, 105.3 (d, \(J_{\text{CF}} = 25.5\) Hz), 55.7 ppm; \(^19\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) −87.0 ppm; HRMS (EI): calcd for C\(_{21}\)H\(_{17}\)FO\(_2\) [M]+: 320.1213, found: 320.1214.
(2-(4-Chlorophenoxy)-2-fluoroethene-1,1-diyl)dibenzene (3ae): White solid. Yield: 76%, mp 67.4–68.2 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.34–7.33 (m, 4H), 7.27–7.19 (m, 8H), 7.03–7.00 (m, 2H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 153.5 (d, $^3J_{CF} = 2.8$ Hz), 150.7 (d, $^1J_{CF} = 287.2$ Hz), 136.0 (d, $^3J_{CF} = 4.0$ Hz), 135.8 (d, $^3J_{CF} = 3.9$ Hz), 129.9, 129.8, 129.6 (d, $^4J_{CF} = 3.1$ Hz), 129.3, 128.4, 128.3, 127.5, 127.4, 117.8, 106.5 (d, $^2J_{CF} = 24.4$ Hz) ppm; 19F NMR (376 MHz, CDCl$_3$) δ –88.0 (s, 1F) ppm; HRMS (EI): calcd for C$_{20}$H$_{14}$ClFO [M]$^+$: 324.0717, found: 324.0722.

(2-Fluoro-2-(4-fluorophenoxy)ethene-1,1-diyl)dibenzene (3af): White solid. Yield: 78%, mp 93.8–94.7 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.37–7.32 (m, 4H), 7.30–7.23 (m, 6H), 7.07–6.98 (m, 4H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 159.2 (d, $^1J_{CF} = 240.8$ Hz), 151.0 (d, $^1J_{CF} = 286.9$ Hz), 150.8–150.7 (m), 136.1 (d, $^3J_{CF} = 4.0$ Hz), 135.9 (d, $^4J_{CF} = 3.8$ Hz), 129.8 (d, $^3J_{CF} = 4.1$ Hz), 129.6 (d, $^4J_{CF} = 3.2$ Hz), 128.3, 128.2, 127.4, 127.3, 117.9 (d, $^3J_{CF} = 8.0$ Hz), 116.3 (d, $^3J_{CF} = 23.5$ Hz), 106.0 (d, $^3J_{CF} = 24.7$ Hz) ppm; 19F NMR (376 MHz, CDCl$_3$) δ –87.8 (s, 1F), –119.2 to –119.3 (m, 1F) ppm; HRMS (EI): calcd for C$_{20}$H$_{14}$F$_2$O [M]$^+$: 308.1013, found: 308.1014.

(2-Fluoro-2-(4-(trifluoromethyl)phenoxy)ethene-1,1-diyl)dibenzene (3ag): Colorless liquid. Yield: 83%. 1H NMR (400 MHz, CDCl$_3$) δ 7.60 (d, $^1J = 8.8$ Hz, 2H), 7.37–7.34 (m, 4H), 7.33–7.17 (m, 8H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 157.3, 150.2 (d, $^1J_{CF} = 287.3$ Hz), 135.7 (d, $^3J_{CF} = 3.9$ Hz), 135.6 (d, $^4J_{CF} = 3.8$ Hz), 129.8 (d, $^3J_{CF} = 4.2$ Hz), 129.5 (d, $^4J_{CF} = 3.1$ Hz), 128.4, 128.3, 127.6, 127.5, 127.3 (q, $^3J_{CF} = 3.7$ Hz), 126.3 (q, $^2J_{CF} = 32.8$ Hz), 124.0 (q, $^1J_{CF} = 269.9$ Hz), 116.5, 107.2 (d, $^3J_{CF} = 23.7$ Hz) ppm; 19F NMR (376 MHz, CDCl$_3$) δ –88.6 (s, 1F) ppm; HRMS (EI): calcd for C$_{21}$H$_{14}$F$_4$O [M]$^+$: 358.0981, found: 358.0986.

4-((1-Fluoro-2,2-diphenylvinyl)oxy)benzaldehyde (3ah): Colorless oil. Yield: 88%. 1H NMR (400 MHz, CDCl$_3$) δ 9.89 (s, 1H), 7.84 (d, $^1J = 8.8$ Hz, 2H), 7.36–7.20 (m, 12H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 190.6, 159.5 (d, $^3J_{CF} = 3.3$ Hz), 150.1 (d, $^1J_{CF} = 287.3$ Hz), 135.7 (d, $^4J_{CF} = 3.8$ Hz), 135.6 (d, $^3J_{CF} = 3.9$ Hz), 132.7, 132.0, 129.8 (d, $^3J_{CF} = 4.4$ Hz), 129.5 (d, $^4J_{CF} = 3.2$ Hz), 128.4, 128.3, 127.7, 127.6, 116.7, 107.5 (d, $^2J_{CF} = 23.4$ Hz) ppm; 19F NMR (376 MHz, CDCl$_3$) δ –88.2 (s, 1F) ppm; HRMS (EI): calcd for C$_{21}$H$_{15}$FO$_2$ [M]$^+$: 318.1056, found: 318.1055.
3-((1-Fluoro-2,2-diphenylvinyl)oxy)pyridine (3ai): Yellow oil. Yield: 85%. 1H NMR (400 MHz, CDCl$_3$) δ 8.47 (d, $J=2.4$ Hz, 1H), 8.37–8.36 (m, 1H), 7.41–7.21 (m, 12H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 151.5 (d, $J_{CF}=2.8$ Hz), 150.6 (d, $J_{CF}=287.6$ Hz), 145.4, 139.4 (d, $J_{CF}=0.9$ Hz), 135.7 (d, $J_{CF}=3.9$ Hz), 135.6 (d, $J_{CF}=3.9$ Hz), 129.8, 129.7, 129.6 (d, $J_{CF}=3.2$ Hz), 128.4, 128.3, 127.6, 124.2, 123.6, 106.8 (d, $J_{CF}=23.6$ Hz) ppm; 19F NMR (376 MHz, CDCl$_3$) δ −88.6 ppm; HRMS (EI): calcd for C$_{19}$H$_{14}$FNO [M$^+$]: 291.1059, found: 291.1058.

![3ai](image)

4-((1-Fluoro-2,2-diphenylvinyl)oxy)pyridine (3aj): White solid. Yield: 91%, mp 144.6–146.2 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.41–7.27 (m, 10H), 7.05–7.03 (m, 2H), 6.27–6.23 (m, 2H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 179.0, 146.3 (d, $J_{CF}=269.3$ Hz), 138.5 (d, $J_{CF}=1.7$ Hz), 134.9 (d, $J_{CF}=3.8$ Hz), 134.8 (d, $J_{CF}=3.2$ Hz), 129.7 (d, $J_{CF}=4.5$ Hz), 129.5 (d, $J_{CF}=3.7$ Hz), 129.1, 128.7, 128.6, 128.5, 118.8, 117.4 (d, $J_{CF}=20.5$ Hz) ppm; 19F NMR (376 MHz, CDCl$_3$) δ −95.0 (s, 1F) ppm; HRMS (EI): calcd for C$_{19}$H$_{14}$FNO [M$^+$]: 291.1059, found: 291.1060.

![3aj](image)

3-((1-Fluoro-2,2-diphenylvinyl)oxy)thiophene (3ak): Colorless oil. Yield: 71%. 1H NMR (400 MHz, CDCl$_3$) δ 7.34–7.23 (m, 10H), 7.18 (dd, $J=5.2$, 3.2 Hz, 1H), 6.85–6.83 (m, 1H), 6.74–6.72 (m, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 152.0 (d, $J_{CF}=287.9$ Hz), 151.7 (d, $J_{CF}=2.3$ Hz), 136.2 (d, $J_{CF}=4.0$ Hz), 136.0 (d, $J_{CF}=3.8$ Hz), 129.9 (d, $J_{CF}=4.1$ Hz), 129.7 (d, $J_{CF}=3.2$ Hz), 128.3, 128.2, 127.3, 127.2, 125.4, 119.0 (d, $J_{CF}=0.5$ Hz), 105.4 (d, $J_{CF}=1.5$ Hz), 104.7 (d, $J_{CF}=24.7$ Hz) ppm; 19F NMR (376 MHz, CDCl$_3$) δ −88.3 ppm; HRMS (EI): calcd for C$_{18}$H$_{13}$FOS [M$^+$]: 296.0671, found: 296.0674.

![3ak](image)

3,3'-(2-Fluoro-2-(p-tolyloxy)ethene-1,1-diyl)bis(fluorobenzene) (3bb): Yellow solid. Yield: 75%, mp 80.4–81.5 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.33–7.27 (m, 10H), 7.18 (dd, $J=5.2$, 3.2 Hz, 1H), 6.85–6.83 (m, 1H), 6.74–6.72 (m, 1H) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 152.0 (d, $J_{CF}=287.9$ Hz), 151.7 (d, $J_{CF}=2.3$ Hz), 136.2 (d, $J_{CF}=4.0$ Hz), 136.0 (d, $J_{CF}=3.8$ Hz), 129.9 (d, $J_{CF}=4.1$ Hz), 129.7 (d, $J_{CF}=3.2$ Hz), 128.3, 128.2, 127.3, 127.2, 125.4, 119.0 (d, $J_{CF}=0.5$ Hz), 105.4 (d, $J_{CF}=1.5$ Hz), 104.7 (d, $J_{CF}=24.7$ Hz) ppm; 19F NMR (376 MHz, CDCl$_3$) δ −84.1 (s, 1F), −113.0 to −113.1 (m, 2F) ppm; HRMS(EI): calcd for C$_{21}$H$_{15}$F$_3$O [M$^+$]: 340.1075, found: 340.1076.
4,4’-(2-Fluoro-2-(4-methoxyphenoxy)ethene-1,1-diyl)bis(fluorobenzene) (3cd): Yellow solid. Yield: 76%, mp 79.6–81.4 °C. \(^1 \text{H} \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.29–7.21 (m, 4H), 7.05–6.94 (m, 6H), 6.87–6.82 (m, 2H), 3.76 (s, 3H) ppm; \(^{13} \text{C} \) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 161.9 (d, \(^1 J_{CF} = 245.5 \) Hz), 156.3, 151.5 (d, \(^1 J_{CF} = 286.7 \) Hz), 148.4 (d, \(^3 J_{CF} = 2.3 \) Hz), 132.2–132.1 (m), 132.0–131.9 (m), 131.5 (dd, \(^3 J_{CF} = 8.0 \) Hz, \(^4 J_{CF} = 3.9 \) Hz), 131.2 (dd, \(^3 J_{CF} = 7.9 \) Hz, \(^4 J_{CF} = 3.2 \) Hz), 117.7, 115.3 (d, \(^2 J_{CF} = 21.4 \) Hz), 115.2 (d, \(^2 J_{CF} = 21.3 \) Hz), 114.9, 103.4 (d, \(^2 J_{CF} = 26.3 \) Hz), 55.7 ppm; \(^{19} \text{F} \) NMR (376 MHz, CDCl\(_3\)) \(\delta \) –87.0 (s, 1F), –114.4 to –114.5 (m, 1F), –114.6 to –114.7 (m, 1F) ppm; HRMS (EI): calcd for C\(_{21}\)H\(_{15}\)F\(_3\)O\(_2\) [M]+: 356.1024, found: 356.1025.

4,4’-(2-Fluoro-2-(4-fluorophenoxy)ethene-1,1-diyl)bis(methylbenzene) (3df): Colorless liquid. Yield: 85%. \(^1 \text{H} \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.23–7.22 (m, 2H), 7.14 (d, \(J = 8.4 \) Hz, 4H), 7.06–7.00 (m, 4H), 6.98–6.94 (m, 2H), 2.34 (s, 3H), 2.28 (m, 3H) ppm; \(^{13} \text{C} \) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 159.2 (d, \(^1 J_{CF} = 240.7 \) Hz), 150.8 (d, \(^1 J_{CF} = 285.9 \) Hz), 151.0–150.9 (m), 137.1, 137.0, 133.4 (d, \(^3 J_{CF} = 4.0 \) Hz), 133.2 (d, \(^4 J_{CF} = 3.8 \) Hz), 129.8 (d, \(^3 J_{CF} = 4.1 \) Hz), 129.5 (d, \(^4 J_{CF} = 3.2 \) Hz), 129.0, 128.9, 117.9 (d, \(^3 J_{CF} = 8.1 \) Hz), 116.4 (d, \(^2 J_{CF} = 23.5 \) Hz), 105.9 (d, \(^2 J_{CF} = 24.7 \) Hz), 21.3, 21.2 ppm; \(^{19} \text{F} \) NMR (376 MHz, CDCl\(_3\)) \(\delta \) –88.7 (s, 1F), –119.3 to –119.4 (m, 1F), –114.4 to –114.5 (m, 1F), –114.6 to –114.7 (m, 1F) ppm; HRMS (EI): calcd for C\(_{22}\)H\(_{18}\)F\(_2\)O [M]+: 336.1326, found: 336.1327.

4,4’-(2-Fluoro-2-phenoxyethene-1,1-diyl)bis(chlorobenzene) (3ea): Colorless liquid. Yield: 57%. \(^1 \text{H} \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.34–7.30 (m, 4H), 7.26–7.16 (m, 6H), 7.14–7.06 (m, 3H) ppm; \(^{13} \text{C} \) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 154.5 (d, \(^3 J_{CF} = 2.5 \) Hz), 151.2 (d, \(^1 J_{CF} = 288.4 \) Hz), 134.3 (d, \(^3 J_{CF} = 4.1 \) Hz), 134.2 (d, \(^4 J_{CF} = 4.0 \) Hz), 133.4, 133.3, 131.2 (d, \(^3 J_{CF} = 4.2 \) Hz), 130.9 (d, \(^4 J_{CF} = 3.2 \) Hz), 130.0, 128.6, 128.5, 124.4, 116.5, 104.1 (d, \(^2 J_{CF} = 25.7 \) Hz) ppm; \(^{19} \text{F} \) NMR (376 MHz, CDCl\(_3\)) \(\delta \) –85.5 (s, 1F) ppm; HRMS (EI): calcd for C\(_{20}\)H\(_{13}\)Cl\(_2\)FO [M]+: 358.0327, found: 358.0326.
4,4’-(2-Fluoro-2-phenoxyethene-1,1-diyl)bis(bromobenzene) (3fa): White solid. Yield: 47%, mp 96.8–98.1 °C.

\[^1H \text{NMR (400 MHz, CDCl}_3) \delta 7.49–7.46 (m, 2H), 7.40–7.31 (m, 4H), 7.23–7.06 (m, 7H) ppm; ^13C \text{NMR (100 MHz, CDCl}_3) \delta 154.4 (d, _J_{CF} = 2.4 Hz), 151.1 (d, _J_{CF} = 288.7 Hz), 134.7 (d, _J_{CF} = 4.2 Hz), 134.5 (d, _J_{CF} = 3.8 Hz), 131.6 (d, _J_{CF} = 6.3 Hz), 131.5 (d, _J_{CF} = 4.1 Hz), 131.2, 131.1, 130.0, 124.4, 121.6, 121.5, 116.5, 104.2 (d, _J_{CF} = 25.8 Hz) ppm; ^19F \text{NMR (376 MHz, CDCl}_3) \delta –85.3 (s, 1F) ppm; HRMS (EI): calcd for C\(_{20}\)H\(_{13}\)Br\(_2\)FO [M]+: 447.9297, found: 447.9304. \]

9-(Fluoro(phenoxy)methylene)-9H-fluorene (3ga): Yellow solid. Yield: 73%, mp 76.9–78.4 °C.

\[^1H \text{NMR (400 MHz, CDCl}_3) \delta 7.87–7.85 (m, 1H), 7.80–7.76 (m, 3H), 7.40–7.31 (m, 5H), 7.23–7.17 (m, 4H) ppm; ^13C \text{NMR (100 MHz, CDCl}_3) \delta 153.7 (d, _J_{CF} = 2.0 Hz), 152.4 (d, _J_{CF} = 299.6 Hz), 139.1, 138.8, 135.3 (d, _J_{CF} = 7.6 Hz), 135.2 (d, _J_{CF} = 6.5 Hz), 130.1, 127.4, 127.3, 127.2, 125.1, 124.3, 124.2, 123.6, 120.0, 117.4, 103.1 (d, _J_{CF} = 25.9 Hz) ppm; ^19F \text{NMR (376 MHz, CDCl}_3) \delta –72.9 (s, 1F) ppm; HRMS (EI): calcd for C\(_{20}\)H\(_{13}\)FO [M]+: 288.0950, found: 288.0949. \]

\((E/Z)-(4-(2-Fluoro-2-phenoxyvinyl)phenyl)(methyl)sulfane (3ha): Colorless liquid. Yield: 86%. A mixture of E- and Z-isomers (47:53, the E/Z ratio was determined by \(^{19}\text{F NMR spectroscopy).} \)

\[^1H \text{NMR (400 MHz, CDCl}_3) \delta 7.37–7.31 (m, 4H, both E- and Z-isomer), 7.21–7.12 (m, 5H, both E- and Z-isomer), 5.64 (d, _J = 5.6 Hz, 1H, E-isomer), 5.26 (d, _J = 28.8 Hz, 1H, Z-isomer), 2.45 (s, 3H, Z-isomer), 2.41 (s, 3H, E-isomer) ppm; ^13C \text{NMR (100 MHz, CDCl}_3) \delta 155.0 (d, _J_{CF} = 286.0 Hz), 154.8 (d, _J_{CF} = 0.9 Hz), 153.7 (d, _J_{CF} = 2.6 Hz), 153.5 (d, _J_{CF} = 282.1 Hz), 136.9, 136.8, 130.0, 129.9, 129.2 (d, _J_{CF} = 6.5 Hz), 128.9 (d, _J_{CF} = 8.1 Hz), 128.2, 128.1, 128.0 (d, _J_{CF} = 3.6 Hz), 126.8 (d, _J_{CF} = 4.6 Hz), 124.6, 124.5, 117.4, 116.6, 91.9 (d, _J_{CF} = 37.9 Hz), 90.0 (d, _J_{CF} = 19.4 Hz), 15.9, 15.8 ppm; ^19\text{F NMR (376 MHz, CDCl}_3) \delta –82.1 (d, _J = 28.6 Hz, 1F, Z-isomer), –82.5 (d, _J = 5.6 Hz, 1F, E-isomer) ppm; HRMS (EI): calcd for C\(_{15}\)H\(_{13}\)FOS [M]+: 260.0671, found: 260.0673. \]

\((E/Z)-1-(2-Fluoro-2-(4-methoxyphenoxy)vinyl)naphthalene (3id): Yellow solid. Yield: 81%. A mixture of E- and Z-isomers (65:35, the E/Z ratio was determined by \(^{19}\text{F NMR spectroscopy).} \)

\[^1H \text{NMR (400 MHz, CDCl}_3) \delta 8.21 (d, _J = 8.4 Hz, 1H, E-isomer), 8.10–8.08 (m, 1H, Z-isomer), 7.98–7.85 (m, 3H, both E- and Z-isomer), 7.68–7.53 (m, 3H, both E- and Z-isomer), 7.34 (d, _J = 8.8 Hz, 2H, Z-isomer), 7.20 (d, _J = 8.8 Hz, 2H, E-isomer), 7.05 (d, _J = 9.2 Hz, 2H, Z-isomer), 6.94 (d, _J = 8.8 Hz, 2H, E-isomer), 6.42 (d, _J = 5.6 Hz, 1H, E-isomer), 5.95 (d, _J = 27.2 Hz, 1H, Z-isomer), 3.88 (s, 3H, Z-isomer), 3.82 (s, 3H, E-isomer) ppm; ^13C \text{NMR (100 MHz, CDCl}_3) \delta 157.4 \]
(E/Z)-1-(tert-Butyl)-4-(2-fluoro-2-(4-fluorophenoxy)vinyl)benzene (3jf): Colorless liquid. Yield: 88%. A mixture of E- and Z-isomers (74:26, the E/Z ratio was determined by 19F NMR spectroscopy). 1H NMR (400 MHz, CDCl$_3$) δ 7.35–7.30 (m, 4H, both E- and Z-isomer), 7.11–7.08 (m, 2H, both E- and Z-isomer), 5.66 (d, $J = 5.6$ Hz, 1H, E-isomer), 5.27 (d, $J = 28.8$ Hz, 1H, Z-isomer), 1.31 (s, 9H, tert-butyl-E-isomer), 1.28 (s, 9H, E-isomer) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 159.4 (d, 1J$_{CF} = 241.5$ Hz), 159.3 (d, 1J$_{CF} = 241.1$ Hz), 155.0 (d, 1J$_{CF} = 285.7$ Hz), 153.4 (d, 1J$_{CF} = 281.6$ Hz), 150.8, 150.7, 149.9 (d, 3J$_{CF} = 2.0$ Hz), 149.8 (d, 3J$_{CF} = 2.1$ Hz), 149.7–149.6 (m), 129.2 (d, 3J$_{CF} = 6.4$ Hz), 128.9 (d, 3J$_{CF} = 7.9$ Hz), 127.5 (d, 4J$_{CF} = 6.9$ Hz), 127.3 (d, 4J$_{CF} = 3.6$ Hz), 125.6, 118.8 (d, 3J$_{CF} = 8.4$ Hz), 118.0 (d, 3J$_{CF} = 8.2$ Hz), 116.5 (d, 2J$_{CF} = 23.5$ Hz), 116.4 (d, 2J$_{CF} = 23.5$ Hz), 92.0 (d, 2J$_{CF} = 37.0$ Hz), 90.0 (d, 2J$_{CF} = 19.4$ Hz), 34.6, 34.5, 31.3, 31.2 ppm; 19F NMR (376 MHz, CDCl$_3$) δ –83.6 (d, 1J$_{CF} = 28.2$ Hz), –81.1 (d, 1J$_{CF} = 28.9$ Hz), 55.7, 55.6 ppm; HRMS (EI): calcd for C$_{19}$H$_{15}$F$_2$O $[M]^+$: 294.1056, found: 294.1058.

(E/Z)-1-Bromo-3-(2-fluoro-2-(3-methoxyphenoxy)vinyl)benzene (3kl): Yellow oil. Yield: 80%. A mixture of E- and Z-isomers (44:56, the E/Z ratio was determined by 19F NMR spectroscopy). 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (s, 1H, both E- and Z-isomer), 7.25–7.14 (m, 3H, both E- and Z-isomer), 6.65–6.60 (m, 3H, both E- and Z-isomer), 5.50 (d, $J = 5.6$ Hz, 1H, E-isomer), 5.12 (d, $J = 28.4$ Hz, 1H, Z-isomer), 3.70 (s, 3H, both E- and Z-isomer) ppm; 13C NMR (100 MHz, CDCl$_3$) δ 160.0, 159.9, 154.7 (d, 1J$_{CF} = 286.2$ Hz), 154.3, 153.3 (d, 3J$_{CF} = 2.1$ Hz), 153.1 (d, 1J$_{CF} = 284.1$ Hz), 133.4 (d, 3J$_{CF} = 6.5$ Hz), 133.2 (d, 3J$_{CF} = 8.6$ Hz), 129.5, 129.4, 129.3, 129.0, 128.6 (d, 4J$_{CF} = 1.9$ Hz), 128.4 (d, 4J$_{CF} = 2.0$ Hz), 125.2 (d, 4J$_{CF} = 7.1$ Hz), 125.0 (d, 4J$_{CF} = 3.5$ Hz), 121.6, 121.5, 109.4, 109.3, 108.6, 107.7, 102.9, 102.1, 90.0 (d, 2J$_{CF} = 38.4$ Hz), 87.7 (d, 2J$_{CF} = 28.9$ Hz), 54.4 ppm; 19F NMR (376 MHz, CDCl$_3$) δ –80.1 (d, $J = 5.6$ Hz, 1F, E-isomer), –80.3 (d, $J = 28.2$ Hz, 1F, Z-isomer) ppm; HRMS (EI): calcd for C$_{18}$H$_{13}$BrFO$_2$ [M]$^+$: 322.0005, found: 322.0007.
1H, 13C, 19F NMR and HRMS (EI) spectra of compounds 3

1H NMR Spectrum of 3aa

13C NMR Spectrum of 3aa
19F NMR Spectrum of 3aa

HRMS (EI) of 3aa
1H NMR Spectrum of 3ab

13C NMR Spectrum of 3ab
19F NMR Spectrum of 3ab

HRMS (EI) of 3ab
1H NMR Spectrum of 3ac

13C NMR Spectrum of 3ac
19F NMR Spectrum of 3ac

[Image of 19F NMR spectrum]

HRMS (EI) of 3ac

[Image of HRMS (EI) spectrum]
1H NMR Spectrum of 3ad

13C NMR Spectrum of 3ad
19F NMR Spectrum of 3ad

HRMS (EI) of 3ad
1H NMR Spectrum of 3ae

13C NMR Spectrum of 3ae
19F NMR Spectrum of 3ae
HRMS (EI) of 3ae

20142345 188 (3.133) Cm (188-(4+253))

1H NMR Spectrum of 3af
13C NMR Spectrum of 3af
19F NMR Spectrum of 3af

HRMS (EI) of 3af
1H NMR Spectrum of 3ag

13C NMR Spectrum of 3ag
19F NMR Spectrum of 3ag

HRMS (EI) of 3ag
\[1^1\text{H} \text{ NMR Spectrum of 3ah}\]

\[1^{13}\text{C} \text{ NMR Spectrum of 3ah}\]
19F NMR Spectrum of 3ah
1H NMR Spectrum of 3ai

13C NMR Spectrum of 3ai
19F NMR Spectrum of 3ai

HRMS (EI) of 3ai
1H NMR Spectrum of 3aj

13C NMR Spectrum of 3aj
19F NMR Spectrum of 3aj

HRMS (EI) of 3aj
1H NMR Spectrum of 3ak

13C NMR Spectrum of 3ak
19F NMR Spectrum of 3ak

HRMS (EI) of 3ak

20142349 137 (2.283) Cm (137-48+11)

TOF MS EI+
296.0974 1.69e4
\(^1\)H NMR Spectrum of 3bb

\(^{13}\)C NMR Spectrum of 3bb
$^{19}\text{F NMR Spectrum of 3bb}$

HRMS (EI) of 3bb
1H NMR Spectrum of 3cd

13C NMR Spectrum of 3cd
19F NMR Spectrum of 3cd
HRMS (EI) of 3cd

\[
20142360\ 206\ (3.433)\ Cm\ (206-(9+11))
\]

1H NMR Spectrum of 3df

![1H NMR Spectrum of 3df](image)

![Chemical Structure of 3df](image)
13C NMR Spectrum of 3df

19F NMR Spectrum of 3df
HRMS (EI) of 3df
1H NMR Spectrum of 3ea

13C NMR Spectrum of 3ea
19F NMR Spectrum of 3ea

HRMS (EI) of 3ea
1H NMR Spectrum of 3fa

13C NMR Spectrum of 3fa
19F NMR Spectrum of 3fa

HRMS (EI) of 3fa
1H NMR Spectrum of 3ga

13C NMR Spectrum of 3ga
19F NMR Spectrum of 3ga
HRMS (EI) of 3ga

1H NMR Spectrum of 3ha
13C NMR Spectrum of 3ha

19F NMR Spectrum of 3ha
HRMS (EI) of 3ha

1H NMR Spectrum of 3id
13C NMR Spectrum of 3id

19F NMR Spectrum of 3id
HRMS (EI) of 3id

20142816 151 (2.527) Cm (151+(3+200))

159.0604
247.1117
249.1162
251.0983
254.1126
274.0985
295.1103
294.1058 2.68e4
1H NMR Spectrum of 3kl

13C NMR Spectrum of 3kl
19F NMR Spectrum of 3kl

HRMS (EI) of 3kl