A supramolecular assembly of methyl-substituted cucurbit[5]uril and its potential applications in selective absorption

Chuan-Zeng Wang, Wen-Xuan Zhao, Yun-Qian Zhang, Sai-Feng Xue, Qian-Jiang Zhu, and Zhu Tao*

Experimental Section

Figure S1 The sorption isotherms of Methanol at 298 K. □ symbol = adsorption and, ★ symbol = desorption of the SPMeQ[5]-Hyq -based porous material and SPMeQ[5] powder respectively.
Figure S2 Violated materials sorption profiles of (■) the SPMeQ[5]-Hyq-based porous material, and (●) SPMeQ[5] powder for methanol.

Figure S3 Violated materials sorption profiles of (■) the SPMeQ[5]-Hyq-based porous material, and (●) SPMeQ[5] powder for ethanol.
Figure S4 Violated materials sorption profiles of (■) the SPMeQ[5]-Hyq-based porous material, and (●) SPMeQ[5] powder for acetone.

Figure S5 Violated materials sorption profiles of (■) the SPMeQ[5]-Hyq-based porous material, and (●) SPMeQ[5] powder for acetonitrile.
Figure S6 Violated materials sorption profiles of (■) the SPMeQ[5]-Hyq-based porous material, and (●) SPMeQ[5] powder for tetrachloridemethane.

Figure S7 Violated materials sorption profiles of (■) the SPMeQ[5]-Hyq-based porous material, and (●) SPMeQ[5] powder for diethylether.
Figure S8 Violated materials sorption profiles of (■) the SPMeQ[5]-Hyq-based porous material, and (●) SPMeQ[5] powder for dichloromethane.
Figure S9 Lifetime experiments for methanol (a) and ethanol (b) adsorption of the SPMeQ[5]-Hyq-based porous material.
Figure S10 Powder X-ray diffraction (PXRD) of the SPMeQ[5]-Hyq-based porous material and the corresponding comparison with simulation.
Figure S11 DSC (a) and TG (b) curves of the SPMeQ[5]-Hyq-based porous material and the corresponding comparison with SPMeQ[5] powder, hydroquinone powder in N2.