Electronic supplementary information for

The Stereochemistry of Cleistanthane Diterpenoids from

Phyllanthus emblica

Jun-Jiang Lv,*a Shan Yu,*a,b Ying Xin, a,b Hong-Tao Zhu,*a Dong Wang,*a Rong-Rong Cheng,*a Chong-Ren Yang,*a Min Xu,*a and Ying-Jun Zhang *a

a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China.

b University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China.

* Tel: +86-871-6522-3235. Fax: +86-871-6522-3235. E-mail: zhangyj@mail.kib.ac.cn (Ying-Jun Zhang) and minxu@mail.kib.ac.cn (Min Xu).
Table of contents

1. S1 Figure 1. Partial ^1^H NMR spectra of (S)- and (R)-MTPA esters 1s and 1r of 1B
2. S2 Figure 2. Key ^1^H-^1^H COSY[^1] and HMBC[^2] correlations of compounds 2-6
3. S3 HRESIMS of compound 1
4. S4 ^1^H NMR (500 MHz) spectrum of compound 1 in CD$_3$OD
5. S5 ^13^C NMR (125 MHz) spectrum of compound 1 in CD$_3$OD
6. S6 HSQC spectrum of compound 1 in CD$_3$OD
7. S7 HMBC spectrum of compound 1 in CD$_3$OD
8. S8 ^1^H-^1^H COSY spectrum of compound 1 in CD$_3$OD
9. S9 ROESY spectrum of compound 1 in CD$_3$OD
10. S10 HRESIMS of compound 1A
11. S11 ^1^H NMR (600 MHz) spectrum of compound 1A in C$_5$D$_5$N
12. S12 ^13^C NMR (150 MHz) spectrum of compound 1A in C$_5$D$_5$N
13. S13 HSQC spectrum of compound 1A in C$_5$D$_5$N
14. S14 HMBC spectrum of compound 1A in C$_5$D$_5$N
15. S15 ^1^H-^1^H COSY spectrum of compound 1A in C$_5$D$_5$N
16. S16 ROESY spectrum of compound 1A in C$_5$D$_5$N
17. S17 HRESIMS of compound 2
18. S18 ^1^H NMR (500 MHz) spectrum of compound 2 in CD$_3$OD
19. S19 ^13^C NMR (125 MHz) spectrum of compound 2 in CD$_3$OD
20. S20 HSQC spectrum of compound 2 in CD$_3$OD
21. S21 HMBC spectrum of compound 2 in CD$_3$OD
22. S22 ^1^H-^1^H COSY spectrum of compound 2 in CD$_3$OD
23. S23 ROESY spectrum of compound 2 in CD$_3$OD
24. S24 HRESIMS of compound 3
25. S25 ^1^H NMR (600 MHz) spectrum of compound 3 in CD$_3$OD
26. S26 ^13^C NMR (150 MHz) spectrum of compound 3 in CD$_3$OD
27. S27 HSQC spectrum of compound 3 in CD$_3$OD
28. S28 HMBC spectrum of compound 3 in CD$_3$OD
29. S29 ^1^H-^1^H COSY spectrum of compound 3 in CD$_3$OD
30. S30 ROESY spectrum of compound 3 in CD$_3$OD
31. S31 HRESIMS of compound 4
32. S32 ^1^H NMR (600 MHz) spectrum of compound 4 in CD$_3$OD
33. S33 ^13^C NMR (150 MHz) spectrum of compound 4 in CD$_3$OD
34. S34 HSQC spectrum of compound 4 in CD$_3$OD

S2
35. S35 HMBC spectrum of compound 4 in CD3OD
36. S36 1H-1H COSY spectrum of compound 4 in CD3OD
37. S37 ROESY spectrum of compound 4 in CD3OD
38. S38 HRESIMS of compound 5
39. S39 1H NMR (600 MHz) spectrum of compound 5 in CD3OD
40. S40 13C NMR (150 MHz) spectrum of compound 5 in CD3OD
41. S41 HSQC spectrum of compound 5 in CD3OD
42. S42 HMBC spectrum of compound 5 in CD3OD
43. S43 1H-1H COSY spectrum of compound 5 in CD3OD
44. S44 ROESY spectrum of compound 5 in CD3OD
45. S45 HRESIMS of compound 6
46. S46 1H NMR (600 MHz) spectrum of compound 6 in CD3OD
47. S47 13C NMR (150 MHz) spectrum of compound 6 in CD3OD
48. S48 HSQC spectrum of compound 6 in CD3OD
49. S49 HMBC spectrum of compound 6 in CD3OD
50. S50 1H-1H COSY spectrum of compound 6 in CD3OD
51. S51 ROESY spectrum of compound 6 in CD3OD
52. S52 ESI MS spectrum of 1B
53. S53 1H NMR spectrum of (S)-MTPA ester derivative 1s of 1B (800 MHz, CDCl3)
54. S54 1H-1H COSY spectrum of (S)-MTPA ester derivative 1s of 1B (800 MHz, CDCl3)
55. S55 ROESY spectrum of (S)-MTPA ester derivative 1s of 1B (800 MHz, CDCl3)
56. S56 1H NMR spectrum of (R)-MTPA ester derivative 1r of 1B (800 MHz, CDCl3)
57. S57 1H-1H COSY spectrum of (R)-MTPA ester derivative 1r of 1B (800 MHz, CDCl3)
58. S58 ROESY spectrum of (R)-MTPA ester derivative 1r of 1B (800 MHz, CDCl3)
59. S59 ECD calculations of compound 1A
60. S60 ECD calculations of compound 1
61. S61 ECD calculations of compound 3
62. S62 ECD calculations of compound 4
63. S63 ECD calculations of compound 5
64. S64 OR calculations of compound 6
1. S1 Figure 1. Partial 1H NMR spectra of (S)- and (R)-MTPA esters $1s$ and $1r$ of $1B$
2. S2 Figure 2. Key 1H-1H COSY \rightarrow and HMBC \rightarrow correlations of compounds 2-6
3. S3 HRESIMS of compound 1

Data File: D:\分子量測定\2013-01-24\gca40_TLJ1751_24.lcd

<table>
<thead>
<tr>
<th>Elmt</th>
<th>Val</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>P</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Br</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Error Margin (mDa): 20.0

HC Ratio: unlimited
Max Isotopes: all
MSn Iso R#: 75.00

DBE Range: 0.0 - 30.0
Apply N Rule: no
Isotope R#: 1.00
MSn Logic Mode: OR

Electron ions: both
Use MSn Info: yes
Isotope Res: 10000
Max Results: 800

Event#: 2 M8(E-) Ret. Time: 0.200 -> 0.000 Scan#: 54 -> 122
4. S4 1H NMR (500 MHz) spectrum of compound 1 in CD$_3$OD
5. 13C NMR (125 MHz) spectrum of compound 1 in CD$_3$OD
6. S6 HSQC spectrum of compound 1 in CD$_3$OD
7. S7 HMBC spectrum of compound 1 in CD$_3$OD
8. 1H-1H COSY spectrum of compound 1 in CD$_3$OD
9. S9 ROESY spectrum of compound 1 in CD$_3$OD
10. S10 HRESIMS of compound 1A
11. S11 1H NMR (600 MHz) spectrum of compound 1A in C$_5$D$_5$N
12.S12 13C NMR (150 MHz) spectrum of compound 1A in C$_5$D$_5$N
13. S13 HSQC spectrum of compound 1A in C$_5$D$_5$N
14. **S14 HMBC spectrum of compound 1A in C$_5$D$_5$N**
15. 1H-1H COSY spectrum of compound 1A in C$_5$D$_5$N
16. S16 ROESY spectrum of compound 1A in C₅D₅N
17. S17 HRESIMS of compound 2
18. S18 1H NMR (500 MHz) spectrum of compound 2 in CD$_3$OD
19. S19 13C NMR (125 MHz) spectrum of compound 2 in CD$_3$OD
20. S20 HSQC spectrum of compound 2 in CD$_3$OD
21. S21 HMBC spectrum of compound 2 in CD$_3$OD
22. S22 1H-1H COSY spectrum of compound 2 in CD$_3$OD
23. S23 ROESY spectrum of compound 2 in CD$_3$OD
24. S24 HRESIMS of compound 3

Data File: D:\分子量测定\2013-01-24\gce40_TLJ1752A_25.lcd

Elmt	Val.	Min	Max
H | 1 | 0 | 100
B | 3 | 0 | 0
C | 4 | 0 | 50
N | 3 | 0 | 0
O | 2 | 0 | 30
P | 3 | 0 | 0
S | 2 | 0 | 0
Br | 1 | 0 | 0
I | 3 | 0 | 0
Cl | 1 | 0 | 0

Use Adduct: H

Error Margin (mDa): 20.0
HC Ratio: unlimited
Max Isotopes: all
MSn Iso RI (%): 75.00

DBE Range: 0.0 - 30.0
Apply N Rule: no
Isotope RI (%): 1.00
MSn Logic Mode: OR
Electron Ions: both
Use MSn Info: yes
Isotope Res: 10000
Max Results: 800

Event #: 2 MS(E-) Ret. Time: 0.240 -> 0.550 - 1.320 -> 2.167 Scan #: 50 -> 112 - 266 -> 436

![Graph of HRESIMS data]
25. S25 1H NMR (600 MHz) spectrum of compound 3 in CD$_3$OD
26. S26 13C NMR (150 MHz) spectrum of compound 3 in CD$_3$OD
27. S27 HSQC spectrum of compound 3 in CD$_3$OD
28. S28 HMBC spectrum of compound 3 in CD$_3$OD
29. S29 1H-1H COSY spectrum of compound 3 in CD$_3$OD
30. S30 ROESY spectrum of compound 3 in CD$_3$OD
31. S31 HRESIMS of compound 4
32. S32 1H NMR (600 MHz) spectrum of compound 4 in CD$_3$OD
33. S33 13C NMR (150 MHz) spectrum of compound 4 in CD$_3$OD
34. S34 HSQC spectrum of compound 4 in CD$_3$OD
35. S35 HMBC spectrum of compound 4 in CD$_3$OD
36. S36 1H-1H COSY spectrum of compound 4 in CD$_3$OD
37. S37 ROESY spectrum of compound 4 in CD$_3$OD
38. S38 HRESIMS of compound 5

Data File: D:\分子量测定2013-01-24\gca40_TLJ1728_23.lcd

Error Margin (mDa): 20.0
HC Ratio: unlimited
Max Isotopes: all
MSn Iso RI (%): 75.00
Electron Ions: both
Use MSn Info: yes
Isotope Res: 10000
MSn Logic Mode: OR
Max Results: 800

Event#: 2 M3(E-) Ret. Time: 0.240 -> 0.550 -> 1.380 -> 1.916 Scan#: 50 -> 112 -> 273 -> 386
39. 1H NMR (600 MHz) spectrum of compound 5 in CD$_3$OD
40. 13C NMR (150 MHz) spectrum of compound 5 in CD$_3$OD
41. S41 HSQC spectrum of compound 5 in CD₃OD
42. S42 HMBC spectrum of compound 5 in CD$_3$OD
43. S43 $^1H-^1H$ COSY spectrum of compound 5 in CD$_3$OD
44. S44 ROESY spectrum of compound 5 in CD$_3$OD
45. S45 HRESIMS of compound 6
46. S46 1H NMR (600 MHz) spectrum of compound 6 in CD$_3$OD
47. 13C NMR (150 MHz) spectrum of compound 6 in CD$_3$OD
48. S48 HSQC spectrum of compound 6 in CD$_3$OD
49. S49 HMBC spectrum of compound 6 in CD$_3$OD
50. S50 1H-1H COSY spectrum of compound 6 in CD$_3$OD
51. S51 ROESY spectrum of compound 6 in CD$_3$OD
52. S52 ESI MS spectrum of 1B

YLJ1651-1 19 (0.376) Cm (12:23-2:4x10.000) 1: MS2 ES+
3.82e7
53. S53 1H NMR spectrum of (S)-MTPA ester derivative 1s of 1B (800 MHz, CDCl$_3$)
S54 1H-1H COSY spectrum of (S)-MTPA ester derivative 1s of 1B (800 MHz, CDCl3)
55. S55 ROESY spectrum of (S)-MTPA ester derivative 1s of 1B (800 MHz, CDCl₃)
56. 1H NMR spectrum of (R)-MTPA ester derivative $1r$ of $1B$ (800 MHz, CDCl$_3$)
57. S57 1H-1H COSY spectrum of (R)-MTPA ester derivative 1r of 1B (800 MHz, CDCl$_3$)
58. S58 ROESY spectrum of (R)-MTPA ester derivative 1r of 1B (800 MHz, CDCl₃)
59. S59 ECD calculations of compound 1A

Figure 3. DFT optimized conformers of the aglycon of 3R,5S,10R-phyllanembloid A (1A) at B3LYP/6-311G(d, p) level in methanol (IEFPCM), with free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.
Figure 4. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of the aglycon of 3R,5S,10R- phyllanembloid A (1A), with Gaussian band shape 0.3ev.
S60 ECD calculations of compound 1

Figure 5. DFT optimized conformers of 3R,5S,10R- phyllanembloid A (1) at B3LYP/6-311G(d, p) level in methanol (IEFPCM), with free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.
Figure 6. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of 3R,5S,10R-phyllanembloid A (1), with Gaussian band shape 0.3ev.
61. S61 ECD calculations of compound 3

Figure 7. DFT optimized conformers of the aglycon of 3S,5S,10R- phyllanembloid C (3) at B3LYP/6-311G(d, p) level in methanol (IEFPCM), with free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.
Figure 8. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of the aglycon of 3S,5S,10R- phyllanembloid C (3), with Gaussian band shape 0.5ev.
62. S62 ECD calculations of compound 4

Figure 9. DFT optimized conformers of the aglycon of 3R,10R- phyllanembloid D (4) at B3LYP/6-311G(d, p) level in methanol (IEFPCM), with free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.
Figure 10. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of the aglycon of 3R, 10R- phyllanembloid D (4), with Gaussian band shape 0.3eV.
63. S63 ECD calculations of compound 5

Figure 11. DFT optimized conformers of the aglycon of \(3R,4R,5S,10R\)-phyllanembloid E (5) at B3LYP/6-311G(d, p) level in methanol (IEFPCM), with free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.

Figure 12. TDDFT calculated ECD spectra at B3LYP/6-311G(d, p) level in methanol (IEFPCM) for the low energy conformers of the aglycon of \(3R,4R,5S,10R\)-phyllanembloid E (5), with Gaussian band shape 0.5ev.
64. S64 OR calculations of compound 6

Figure 13. DFT optimized conformers of 3R,4R,5S,9R,10S,12R,13R- phyllanembloid F (6) at B3LYP/6-311G(d, p) level in methanol (IEFPCM), with free energies calculated at the same level and Boltzmann distribution at 298 K estimated thereof.

Table 1. Calculated optical rotations of conformers of 3R,4R,5S,9R,10S,12R,13R- phyllanembloid F (6)

<table>
<thead>
<tr>
<th>conformers</th>
<th>6A</th>
<th>6B</th>
<th>6C</th>
<th>6D</th>
<th>6E</th>
<th>6F</th>
<th>6G</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotations</td>
<td>-64.8</td>
<td>-78.7</td>
<td>-88.7</td>
<td>-11.7</td>
<td>-110.5</td>
<td>-112.5</td>
<td>-97.6</td>
</tr>
</tbody>
</table>

Optical rotations were calculated with the basis set B3LYP 6-311G (++2d, p) at gas phase using the optimized conformers at B3LYP 6-311G (2d, p).