Electronic supplementary information

for

Effective liquid phase hydrodechlorination of diclofenac catalysed by Pd/CeO₂

Ke Wu, Xiaojun Qian, Liangyan Chen*, Haiqin Wan, Zhaoyi Xu, Shourong Zheng*, Dongqiang Zhu

State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210093, China

*Corresponding author. Tel: +86-25-89680367; Fax: +86-25-89680367.

E-mail: chenly@nju.edu.cn (L. Chen)

Tel: +86-25-89680373; Fax: +86-25-89680596.

E-mail: srzheng@nju.edu.cn (S. Zheng)
Figure 1S Liquid phase catalytic hydrodechlorination of diclofenac on dp-Pd(1.7)/CeO₂. Solid and open symbols represent two separate runs. Reaction conditions: initial pH 9.0. Catalyst dosage: 0.10 g l⁻¹.
Figure 2S Catalytic hydrodechlorination of diclofenac over dp-Pd(1.7)/CeO₂ (a) with varied catalyst dosages, and (b) influence of catalyst dosage on catalyst dosage normalized initial catalytic activity.
Figure 3S XRD patterns of Pd catalysts.
Figure 4S The TEM images of Pd catalysts supported on CeO$_2$. 
Figure 5S Catalytic HDC of 2-APA over Pd catalysts supported on AC, Al_2O_3 and CeO_2. Reaction conditions: pH 9.0. Catalyst dosage: 0.10 g l\(^{-1}\).
Figure 6S Molecular structure and estimated molecular size of diclofenac using Chem3D Program.