SUPPORTING INFORMATION

Direct Manipulation of Particle Size and Morphology of Ordered Mesoporous Silica by Flow Synthesis

T. N. Nga,b, X. Q. Chena,c, and K. L. Yeunga,d

aDepartment of Chemical and Biomolecular Engineering, bEnergy Technology Concentration Program, dDivision of Environment, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P.R. China. cShanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, P.R. China

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Figure S1 Length of the liquid slug in stable Taylor flow as a function of U_{GS}/U_{LS}.}
\end{figure}
Figure S2 CFD simulation of flow velocity (left) and reactant concentration (right) profiles for a) SiM micromixer and b) T-mixer under balanced flow conditions in the absence of reaction.
Figure S3 CFD simulation of flow velocity (left) and reactant concentration (right) profiles for a) SIM micromixer and b) T-mixer under unbalanced flow conditions (40:1) in the absence of reaction.
Figure S4 a) SEM image of OMS particles prepared from TMASi under balanced flow conditions, the inset TEM image shows the solids are mesoporous, and b) the particle size distribution of the sample.
Figure S5. XRD of OMS sample prepared in batch with DMHA as co-solute at 0°C.