Supporting Information

Synthesis and Biological Evaluation of Fatty acyl Di-cytarabine Prodrug

Feifei Lia,b, Jing Liua, Jiaxing Shia and Yuxia Luana,**
aSchool of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, P. R. China. Fax: (86) 531-88382548; Tel: (86) 531-88382007; E-mail: yuxialuan@sdu.edu.cn
bKangda College of Nanjing Medical University, No. 8 Chunhui Road, Huaguo Shan Da Dao, Xinhai District, Lianyungang, 222000, P. R. China.

The analysis of ^1H NMR spectrum for Ara-R-Ara sample

The peak assignments of the cytarabine part are as follows. The peaks at δ_{H} 8.05 (d, 1H, J= 7.60 Hz, 6-H) and δ_{H} 6.06 (d, 1H, J= 7.60 Hz, 5-H) were assigned to the olefinic protons, namely, the protons of H-6, H-5. The peak appears at δ_{H} 7.21 (d, 1H, 1’-H) was attributed to the proton attached to the oxygenated N-substituted methines of the sugar ring (H-1’). Each of the cytosine ring protons (H-5 and H-6) and the H-1’ proton of the arabinose moiety provided a doublet arising from the indirect spin-spin couplings with the vicinal protons. The resonances were due to the proton attached to H-5 and the H-6 overlap. For suberoyl chloride part, the peaks at δ_{H} 2.39 (t, 4H, -CO-CH$_2$-) can be assigned to the protons of the -CO-CH$_2$- groups. And the spectrum showed signals for a methylene at δ_{H} 1.54 (m, 4H, –CH$_2$–), and δ_{H} 1.27 (m, 8H, –CH$_2$–). By calculating the ratio of the integral area of peaks corresponding to cytarabine and suberoyl chloride part in ^1H-NMR spectrum, the molar ratio of cytarabine to suberoyl chloride in the Ara-R-Ara molecules was determined to be 2:1.