A list of CER papers that met the review criteria for analysis in this study

Chittleborough G. and Treagust D. F., (2008), Correct interpretation of chemical diagrams requires transforming from one level of representation to another, **Res. Sci. Educ.**, 38, 463-482.

Cooper M. M. and Sandi-Urena S., (2009), Design and validation of an instrument to assess metacognitive

Hainzl T. K. and Lewis J. E., (2012), A psychometric evaluation of The Colorado Learning Attitudes about

Jennings K. T., Epp E. M. and Weaver G. C., (2007), Use of a multimedia DVD for physical chemistry: analysis of its effectiveness for teaching content and applications to

Kennepohl D., Guay M. and Thomas V., (2010), Using an online, self-diagnostic test for introductory general...

Murphy K., (2012), Using a personal response system to map cognitive efficiency and gain insight into a proposed learning progression in preparatory chemistry, J. Chem. Educ., 89(10), 1229–1235.

Piquette J. S. and Heikkinen H. W., (2005), Strategies reported used by instructors to address student alternate conceptions in chemical equilibrium, J. Res. Sci. Teach., 42(10), 1112-1134.

Schallies M. and Eysel C., (2004), Learning beyond school:

Stefani C. and Tsaparlis G., (2009), Students’ levels of explanations, models, and misconceptions in basic quantum chemistry: a phenomenographic study, *J. Res. Sci. Teach.*, **46**(5), 520-536.

Taber K. S. and Bricheno P., (2009), Coordinating procedural and conceptual knowledge to make sense of word equations: understanding the complexity of a ‘simple’ completion task at the learner’s resolution, Int. J. Sci. Educ., 31(15), 2021-2055.

Talanquer V., (2008), Students’ predictions about the sensory properties of chemical compounds: additive versus emergent frameworks, Sci. Educ., 92, 96-114.

Treagust D. F., Chittleborough G. D. and Mamiaila T. L., (2004), Students’ understanding of the descriptive and

We thank the reviewers for their helpful comments.

References

Walker J. P. and Sampson V., (2013), Learning to argue and arguing to learn: argument-driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course, *J. Res. Sci. Teach.*, 50(5), 561-596.

