Supporting Information S1

Site-selective chemoenzymatic construction of synthetic glycoproteins using endoglycosidases

Marta Fernández-González, Omar Bouteira, Gonçalo J. L. Bernardes, Justin M. Chalker, Matthew A. Young, James C. Errey and Benjamin G. Davis*

Chemistry Research Laboratory
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA (UK)

Ben.Davis@chem.ox.ac.uk

1. General Considerations S2
2. Experimental Section
 2.1 Preparation of glycoamino acids 3a–11a S7
 2.2 Enzymatic extension of glycoamino Acids S17
 2.3 Preparation of glycopeptides 12a–14a S28
 2.4 Enzymatic extension of glycopeptides S33
 2.5 Preparation of S-SeS- and SS-linked glycoproteins 15-24a S36
 2.5.1 Synthesis of 2-deoxy-2-fluoro-1-thiosugars S36
 2.5.2 Synthesis of sugar diselenides S36
 2.5.3 Preparation of glycoproteins 15-24a S40
 2.6 Enzymatic Extension of Glycoproteins 15-24a S49
 2.7 Data for comparison of triazole vs. thioether on Np276 S68
 2.7.1 Synthesis of azidohomoalanine (Aha) S68
 2.7.2 (rac)-Hpg synthesis S70
 2.7.3 Expression of Np276 Aha61, Np276 Hpg61, Np276 Cys61, Np276 Aha101 S73
 2.7.4 Preparation of substrates for Endo-A catalysed glycosylation of Np276 S81
 2.7.5 Endo-A enzymatic glycosylation on Np276 substrates S91
 2.8 Peptidase activity of modified glycoproteins S95
3. References S97
4. NMR Spectra S98
1. General considerations

Melting points (m.p.) were recorded on a Leica Galen III hot stage microscope equipped with a Testo 720 thermocouple probe and are uncorrected. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker AV400 (400 MHz) or a Bruker AVIII500 (500 MHz) spectrometer, as indicated. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AV400 (100 MHz) spectrometer or on a Bruker AVIII500 (125 MHz) spectrometer, as indicated. NMR Spectra were fully assigned using COSY, HMQC, HMBC and NOESY. All chemical shifts are quoted on the δ scale in ppm using residual solvent as the internal standard (¹H NMR: CDCl₃ = 7.26, CD₃OD = 4.87; DMSO-d₆ = 2.50 and ¹³C NMR: CDCl₃ = 77.0; CD₃OD = 49.0; DMSO-d₆ = 39.5). Coupling constants (J) are reported in Hz with the following splitting abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, and a = apparent.

Infrared (IR) spectra were recorded on a Bruker Tensor 27 Fourier Transform spectrophotometer using thin films on NaCl plates for liquids and oils and KBr discs for solids and crystals. Absorption maxima (νmax) are reported in wavenumbers (cm⁻¹).

Low resolution mass spectra (LRMS) were recorded on a Waters Micromass LCT Premier TOF spectrometer using electrospray ionization (ESI) and high resolution mass spectra (HRMS) were recorded on a Bruker MicroTOF ESI mass spectrometer. Nominal and exact m/z values are reported in Daltons.

Optical rotations were measured on a Perkin–Elmer 241 polarimeter with a path length of 1.0 dm and are reported with implied units of 10⁻¹ deg cm² g⁻¹. Concentrations (c) are given in g/100 ml.

Thin layer chromatography (TLC) was carried out using Merck aluminium backed sheets coated with 60F254 silica gel. Visualization of the silica plates was achieved using a UV lamp (λmax = 254 nm), and/or ammonium molybdate (5% in 2 M H₂SO₄), and/or potassium permanganate (5% KMnO₄ in 1 M NaOH with 5% potassium carbonate). Flash column chromatography was carried out using BDH 40–63 μm
silica gel (VWR). Mobile phases are reported in relative composition (e.g. 1:2:4 H₂O/iPrOH/EtOAc).

Anhydrous solvents were purchased from Fluka or Acros. Triethylamine was stored over NaOH pellets. All other solvents were used as supplied (Analytical or HPLC grade), without prior purification. Distilled water was used for chemical reactions and Milli-Q purified water for protein manipulations. Reagents were purchased from Aldrich and used as supplied, unless otherwise indicated. ‘Petrol’ refers to the fraction of light petroleum ether boiling in the range 40–60 °C. All reactions using anhydrous conditions were performed using flame-dried apparatus under an atmosphere of argon or nitrogen. Brine refers to a saturated solution of sodium chloride. Anhydrous magnesium sulfate (MgSO₄) was used as drying agents after reaction workup, as indicated.

DOWEX 50WX8 (H⁺ form) was conditioned as follows: 100 g of the commercial resin was placed in a 500 mL sintered filter funnel and allowed to swell with 200 mL of acetone for 5 minutes. The solvent was removed by suction and the resin was washed successively with 800 mL of acetone, 500 mL methanol, 500 mL 5 M HCl, and then 1 L of water or until the pH of filtrate was ~ 7, as indicated by pH paper. The resin was partially dried on the filter and then stored and used as needed.

In addition to those specified above, the following abbreviations, designations, and formulas are used throughout the Supporting Information:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>iPrOH</td>
<td>isopropanol</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>sodium bicarbonate</td>
</tr>
<tr>
<td>NH₃OH</td>
<td>ammonium hydroxide</td>
</tr>
<tr>
<td>H₂O</td>
<td>water</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>potassium carbonate</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>aq.</td>
<td>aqueous</td>
</tr>
<tr>
<td>Et₂O</td>
<td>diethyl ether</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>PBu₃</td>
<td>tributylphosphine</td>
</tr>
<tr>
<td>Cs₂CO₃</td>
<td>cesium carbonate</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>ammonium chloride</td>
</tr>
<tr>
<td>NH₄OH</td>
<td>ammonium hydroxide</td>
</tr>
</tbody>
</table>

Solid Phase Peptide Synthesis

Peptides were synthesized by means of Fmoc-chemistry on Rink amide MBHA-polystyrene resin [1% divinyl benzene, GL Biochem] using a microwave assisted Liberty CEM peptide synthesizer. Side-chain protection for the amino acids was tBu for Asp, Ser, Thr; Trt for Asn, Cys, Gln, His and Boc for Lys.

Standard steps included:

Fmoc deprotection: resin treated with 20% piperidine in DMF (10 mL) and irradiated at 60 W for 35 s followed by a second portion of 20% piperidine/DMF (10 mL) and irradiate at 65 W for 180 s (max. temp. 77 °C).

Coupling: resin treated with protected amino acid (5 mL of a 0.2 M solution in DMF), HBTU (2 mL of a 0.45 M solution in DMF), DIEA (1 mL of a 2 M solution in NMP) and irradiated at 25 W for 300 s (max. temp. 75 °C). “His/Cys cycle” uses a modified method in which irradiation was carried out at 25 W for 11 min (max. temp. 53 °C).

Capping: resin treated with 20% acetic anhydride in DMF (10 mL) and irradiated at 50 W for 60 s. (max. Temp. 65 °C).

Cleavage and side-chain deprotection: resin treated with TFA/TIS/H₂O/EDT (94:1:2.5:2.5, 10 mL) and irradiated at 15 W for 18 min (max. temp. 38 °C).

Work up: the cleavage peptide solution was precipitated with iced Et₂O (20 mL), centrifuged (3000 rpm, 5 min) and decanted. New washes with iced Et₂O (20 mL) were repeated twice. The pellet was then dissolved in water and lyophilized.

HPLC analysis

HPLC was performed on a Dionex UltiMate 3000 instrument coupled to a UltiMate 3000 variable wavelength detector, using Chromeleneon software (version 6.80). Analytical analyses were carried out using a Phenomenex Onyx Monolithic C18 (100 × 4.6mm) column and Phenomenex Synergi 4u Fusion-RP 80A (100 × 4.6mm) column. Preparative purifications were carried out using a Phenomenex Onyx Monolithic C18 (100 × 10mm) column and Phenomenex Synergi 4u Fusion-RP 80A (100 × 21.20mm) column. Water (solvent A) and acetonitrile (solvent B), each containing 0.1% TFA, were used as the mobile phase in all the cases.
Supporting Information

Protein and peptide Mass Spectrometry

Liquid chromatography-mass spectrometry (LC–MS) was performed on a Micromass LCT (ESITOF–MS) coupled to a Waters Alliance 2790 HPLC using a Phenomenex Jupiter C4 column (250 \(\times \) 4.6 mm \(\times \) 5μm) for proteins, and Phenomenex Synergi 4u Hydro-RP 80A (150 \(\times \) 2mm) and Phenomenex Onyx Monolithic C18 (100 \(\times \) 4.6mm) for peptides. Water (solvent A) and acetonitrile (solvent B), each containing 0.1% formic acid, were used as the mobile phase at a flow rate of 1.0 mL min\(^{-1}\) (0.2 mL min\(^{-1}\) for Hydro-RP column). The gradient was programmed as follows: 95% A (5 min isocratic) to 100% B after 15 min then isocratic for 5 min. The electrospray source was operated with a capillary voltage of 3.2 kV and a cone voltage of 25 V for subtilisin Bacillus lentus (SBL) and Np276, 35 V for \(\beta \)-galactosidase (SsβG) and 10 V for peptides. Nitrogen was used as the nebulizer and desolvation gas at a total flow of 600 L hr\(^{-1}\). Spectra were calibrated using a calibration curve constructed from a minimum of 17 matched peaks from the multiply charged ion series of equine myoglobin obtained at a cone voltage of 25 V. Total mass spectra were reconstructed from the ion series using the MaxEnt algorithm preinstalled on MassLynx software (v. 4.0 from Waters) according to the manufacturer’s instructions.

Materials

GST–Endo-A fusion protein was overproduced in *Escherichia coli* strain BL21(DE3) and purified by affinity column (Glutathione Sepharose 4B) as previously described.\(^1\) N-\(\alpha \)-Fmoc-L-Asn[GlcNAc]-OH was prepared as previously reported.\(^2,3\) \((S)-4\)-Azido-2-(9H-fluoren-9-ylmethoxycarbonylamino)butanoic acid, \((S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)hex-5-ynoic acid, and propargyl 2-N-acetylamino-2-deoxy-\(\beta \)-D-glucopyranoside were prepared as previously described.\(^4\) Precursors 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-\(\beta \)-D-gluco, galacto, and mannopyranosyl azides along with 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-1-thio-\(\beta \)-D-manno, and glucopyranose were prepared following an adapted methodology described by Albert and Dax.\(^5\) 1-O-(2'-Propargyl)-\(\alpha \)-D-mannopyranoside was prepared as previously described.\(^6\) 2-Acetamido-2-deoxy-1-thio-\(\beta \)-D-glucopyranose and 1-thio-\(\beta \)-D-glucopyranose were prepared as previously reported.\(^7\) Disaccharide oxazoline 1 was prepared as previously reported.\(^8\) SsβG Aha43 C344S 9Ile and SsβG Hpg1 Hpg43 C344S 9Ile were cloned and expressed as previously described.\(^4\) Tristriazole ligand triethyl...
2,2',2''-(4,4',4''-nitrilotris(methylene)tris(1H-1,2,3-triazole-4,1-diyl))triacetate was prepared as previously described.⁹
Supporting Information

2. Experimental section

2.1. Preparation of glycoamino acids 3a–11a

General procedure for the synthesis of 2-deoxy-2-fluoro-glycosyl azides

The corresponding glycopyranosyl azide (1 mmol) was treated with 0.1M NaOMe in MeOH (7 mL/mmol) at room temperature. The reaction mixture was stirred at the same temperature for 15 minutes and neutralized with Dowex (H⁺ 50WX8-200). The ion exchanger was filtered off and washed with MeOH. The resulting solution was concentrated under reduced pressure and the residue purified by chromatographic techniques.

2-Deoxy-2-fluoro-D-glucopyranosyl azide[11]

The title compound was prepared following the general procedure above, starting from 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-D-glucopyranosyl azide[5] (25 mg, 0.075 mmol) and 0.1M NaOMe in MeOH (525 μL). After concentration under reduced pressure crude product (15.5 mg, 100%) was obtained as a white foam. Rf (7:1 EtOAc/MeOH): 0.43; [α]D²⁰: -9.5 (0.9, MeOH); ¹H NMR (CD₃OD, 500 MHz) δ in ppm: 4.83 (dd, 1H, J₁,₂ = 8.8 Hz, J₁,F = 2.3 Hz, H-1), 3.93 (ddd, 1H, J₂,F = 51.6 Hz, J₁,₂ = J₂,₃ = 8.8 Hz, H-2), 3.88 (dd, J₆ₐ,b = 12 Hz, J₅,₆ₐ = 2.2 Hz, H-6a), 3.71–3.60 (m, 2H, H-3,6b), 3.45–3.33 (m 2H, H-4,5); ¹³C NMR (CD₃OD, 125.8 MHz) δ in ppm: 93.3(d, J₂,F = 186.9 Hz, C-2), 89.2 (d, J₁,F = 22.9 Hz, C-1), 80.4 (C-5), 76.4 (d, J₃,F = 16.2 Hz, C-3), 70.9 (d, J₄,F = 8.6 Hz, C-4), 62.4 (C-6); ¹⁹F NMR (CD₃OD, 470.4 MHz) δ in ppm: -199.4 (ddd, J₂,F = 51.6 Hz, J₃,F = 14.9 Hz, J₁,F = 2.3 Hz, F-2); FT–IR (KBr) ν in cm⁻¹: 3358, 3075, 2733, 2687, 2105; HRMS (TOF ES–) for (M–H) C₆H₉FN₃O₄ (m/z): calc. 206.0583; found 206.0583; spectroscopic data was identical to that previously reported[10].

2-Deoxy-2-fluoro-β-D-galactopyranosyl azide

The title compound was prepared following the general procedure above, starting from 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-β-D-galactopyranosyl azide[11] (27.5 mg, 0.083 mmol) and 0.1M NaOMe in MeOH (578 μL). After concentration under reduced pressure crude product (17.1 mg, 100%) was obtained as a white solid. Rf (7:1 EtOAc/MeOH): 0.43; mp: 92–94 ºC; [α]D²⁰: +2.9 (0.53, MeOH); ¹H NMR (CD₃OD, 500 MHz) δ in ppm: 4.74 (dd, 1H,
\[J_{1,2} = 8.4 \text{ Hz}, J_{1,F} = 3.7 \text{ Hz}, H-1 \], 4.29 (ddd, 1H, \ J_{2,F} = 52.0 \text{ Hz}, J_{1,2} = J_{2,3} = 8.4 \text{ Hz}, H-2), 3.92 (m, H-4), 3.80–3.66 (m, 4H, H-3, 5, 6a,b); \ ^{13}\text{C} \text{ NMR (CD}_{3}\text{OD, 125.8 MHz) } \delta \text{ in ppm: 92.5 (d, } J_{2,F} = 183.1 \text{ Hz, C-2}, 89.6 (d, } J_{1,F} = 23.8 \text{ Hz, C-1}, 79.2 (C-5), 73.3 (d, } J_{3,F} = 17.2 \text{ Hz, C-3}, 71.0 (d, } J_{4,F} = 8.6 \text{ Hz, C-4}, 62.4 (C-6); \ ^{19}\text{F} \text{ NMR (CD}_{3}\text{OD, 470.4 MHz) } \delta \text{ in ppm: } -207.9 (dddd, } J_{2,F} = 52.0 \text{ Hz, } J_{3,F} = 13.9 \text{ Hz, } J_{1,F} = 3.7 \text{ Hz, } J_{4,F} = 3.5 \text{ Hz, F-2); FT–IR (KBr) } \nu \text{ in cm}^{-1}: 3536, 2925, 2122, 1373, 1251, 1071; \ \text{HRMS (TOF ES–) for (M–H) C}_{6}H_{9}FN_{3}O_{4} (m/z): calc. 206.0583; found 206.0582.}

2-Deoxy-2-fluoro-\beta-D-mannopyranosyl azide

The title compound was prepared following the general procedure above, starting from 3,4,6-tri-\textit{O}-acyetyl-2-deoxy-2-fluoro-\beta-D-mannopyranosyl azide (89 mg, 0.267 mmol) and 0.1M NaOMe in MeOH (1.9 mL). After concentration under reduced pressure the residue was purified by column chromatography (7:1 EtOAc/MeOH) to afford the title compound (19.9 mg, 36%) as a white hygroscopic solid. \[[\alpha]^{20}_{D} \text{ +3.2 (0.60, MeOH); } ^{1}\text{H} \text{ NMR (CD}_{3}\text{OD, 500 MHz) } \delta \text{ in ppm: 4.71 (d, 1H, } J_{2,F} = 51.9 \text{ Hz), 4.63 (d, 1H, } J_{1,F} = 22.2 \text{ Hz, H-1), 3.93 (d, } J_{6a,b} = 12.1 \text{ Hz, H-6a), 3.73 (dd, } J_{6a,b} = 12.1 \text{ Hz, } J_{5,6b} = 6.3 \text{ Hz, H-6b), 3.62–3.50 (m, 2H, H-3,4), 3.38 (m, 1H, H-5); } ^{13}\text{C} \text{ NMR (CD}_{3}\text{OD, 125.8 MHz) } \delta \text{ in ppm: 93.2 (d, } J_{2,F} = 185.1 \text{ Hz, C-2), 86.6 (d, } J_{1,F} = 15.9 \text{ Hz, C-1), 80.8 (C-5), 74.0 (d, } J_{3,F} = 17.5 \text{ Hz, C-3), 68.2 (d, } J_{4,F} = 1.9 \text{ Hz, C-4), 62.7 (C-6); } ^{19}\text{F} \text{ NMR (CD}_{3}\text{OD, 470.4 MHz) } \delta \text{ in ppm: } -220.2 (m, F-2); \ \text{FT–IR (KBr) } \nu \text{ in cm}^{-1}: 3357, 2920, 2122, 1071; \ \text{HRMS (TOF ES–) for (M–H) C}_{6}H_{9}FN_{3}O_{4} (m/z): calc. 206.0583; found 206.0584.}

\[(S)-2-(9\text{H-fluoren-9-ylmethoxycarbonylamino})-4-\{4-[(2-N\text{-acetylamino-2-deoxy-}\beta-D\text{-glucopyranosyloxy)methyl]}-\text{[1,2,3]-triazol-1-yl}]\text{butanoic acid (3a)}\]
To a deoxygenated (argon was bubbled for 20 min) solution of propargyl 2-acetamido-2-deoxy-β-D-glucopyranoside (57 mg, 0.219 mmol) and (S)-4-Azido-2-(9H-fluoren-9-ylmethoxycarbonylamino)butanoic acid (73 mg, 0.199 mmol) in MeCN (7 mL), cuprous bromide (0.5 mL of 13 mg/mL deoxygenated MeCN, 0.045 mmol) was added, followed by Et3N (28 μL, 0.201 mmol) and water (0.5 mL). After 22 h, TLC (3:2 EtOAc/MeOH) indicated the formation of a product (Rf 0.09) and almost complete consumption of the amino acid starting material (Rf 0.62). The mixture was concentrated in vacuo and purified by flash column chromatography (7:3 to 3:2 EtOAc/MeOH) to afford the triazole 3a (44 mg, 35%) as a white solid; [α]D20: −10.2 (0.12, MeOH); 1H NMR (500 MHz, MeOD): δ 7.96 (s, 1H, ArH triazole), 7.74-7.62 (m, 4H, ArH), 7.35-7.24 (m, 4H, ArH), 4.81 (d, J = 12.7 Hz, 1H, OCH2), 4.73 (d, J = 12.6 Hz, 1H, OCH2), 4.44-4.38 (m, 3H, H-1, Hγ, Hγ'), 4.36-4.29 (m, 2H, CH2 Fmoc), 4.17 (t, J = 6.6 Hz, 1H, CH Fmoc), 3.96 (dd, J = 7.7 Hz, J = 4.8 Hz, 1H, Hα), 3.87 (dd, J = 11.7 Hz, 1H, H-6), 3.69-3.65 (m, 2H, H-2, H-6'), 3.43-3.39 (m, 1H, H-3), 3.29-3.27 (m, 2H, H-4, H-5), 2.42-2.35 (m, 1H, Hβ), 2.20-2.13 (m, 1H, Hβ'), 1.88 (s, 3H, CH3); 13C NMR (125 MHz, CDCl3): δ 176.9 (C=O), 172.9 (CO2H), 157.3 (OC(O)N), 144.4, 144.2, 144.1, 141.62, 141.58 (4×Ar-C, C=Ctriazole), 127.8, 127.2, 125.3, 119.9 (8×Ar-H), 124.9 (CHtriazole), 100.1 (C-1), 77.1 (C-5), 75.1 (C-3), 71.1 (C-4), 66.8 (CH2 Fmoc), 61.7 (C-6), 61.3 (OCH2), 56.1 (C-2), 54.1 (Cα), 47.56 (Cγ), 47.49 (CH Fmoc), 33.9 (Cβ), 22.1 (CH3); HRMS (ES+) for (M+Na) C30H35N5NaO10 (m/z): calc. 648.2282; found 648.2262.

(S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-4-{1-(2-N-acetylamino-2-deoxy-β-D-glucopyranosyl)[1,2,3]-triazol-4-yl}butanoic acid (4a)

To a deoxygenated (argon was bubbled for 20 min) solution of 2-N-acetylamido-2-deoxy-β-D-glucopyranosyl azide (40 mg, 0.162 mmol) and (S)-2-(9H-fluoren-9-
ylmethoxycarbonylamino)hex-5-ynoic acid (51 mg, 0.146 mmol) in MeCN (5 mL), cuprous bromide (0.4 mL of 13 mg/mL deoxygenated MeCN, 0.036 mmol) was added, followed by Et₃N (22 μL, 0.158 mmol) and water (0.4 mL). After 21 h, TLC (3:2 EtOAc/MeOH) indicated the formation of a product (Rf 0.04) and almost complete consumption of the amino acid starting material (Rf 0.68). The mixture was concentrated in vacuo and purified by flash column chromatography (4:1 to 3:2 EtOAc/MeOH) to afford the triazole 4a (54.2 mg, 62%) as a white solid. [α]D²⁰: –7.0 (0.13, MeOH); ¹H NMR (400 MHz, MeOD): δ 7.89 (s, 1H, Ar_H triazole), 7.70-7.57 (m, 4H, ArH), 7.31-7.20 (m, 4H, ArH), 5.71 (d, J = 9.8 Hz, 1H, H-1), 4.30-4.21 (m, 2H, CH₂,Fmoc), 4.18-4.11 (m, 2H, H-2, CHFmoc), 4.00 (dd, J = 7.7 Hz, J = 4.9 Hz, 1H, Hα), 3.78 (dd, J = 11.9 Hz, J = 6.2 Hz, 1H, H-6′), 3.69-3.65 (m, 2H, H-3, H-6′), 3.51-3.49 (m, 2H, H-4, H-5), 2.69 (t, J = 7.7 Hz, 2H, Hγ, Hγ'), 2.15-2.05 (m, 1H, Hβ), 1.97-1.89 (m, 1H, Hβ'), 1.71 (s, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 179.1 (C=O), 173.6 (CO₂H), 158.3 (OC(O)N), 148.7, 148.5, 145.5, 145.3, 142.6 (4×Ar-C, C=C_triazole), 128.8, 128.2, 126.3, 120.9 (8×Ar-H), 122.1 (CH_triazole), 87.9 (C-1), 81.3 (C-4), 75.7 (C-3), 71.4 (C-5), 67.9 (CH₂_Fmoc), 62.4 (C-6), 57.0 (Cα), 56.9 (C-2), 48.4 (CH_Fmoc), 33.8 (Cβ), 22.9, (Cγ), 22.7 (CH₃); HRMS (ES⁺) for (M+Na) C₂₉H₃₃N₅NaO₉ (m/z): calc. 618.2176; found 618.2169.

(S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-4-{1-([β-D-glucopyranosyl][1,2,3]-triazol-4-yl)butanoic acid (5a)

\[
\text{FmocHN} \quad \begin{array}{c} \longrightarrow \end{array} \quad \text{CuBr, Et₃N, MeCN/H₂O} \\
\text{CO₂H} \quad \text{5a}
\]

To a deoxygenated (argon was bubbled for 20 min) solution of β-D-glucopyranosyl azide (35 mg, 0.172 mmol) and (S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)hex-5-ynoic acid (51 mg, 0.147 mmol) in MeCN (5 mL), cuprous bromide (0.5 mL of 10 mg/mL deoxygenated MeCN, 0.036 mmol) was added, followed by Et₃N (36 μL, 0.258 mmol) and water (0.42 mL). After 24h, fresh cuprous bromide (0.4 mL of
10 mg/mL solution) was added. After 3 days, TLC (3:2 EtOAc/MeOH) indicated the formation of a product (Rf 0.19) and almost complete consumption of the amino acid starting material (Rf 0.68). The mixture was concentrated in vacuo and purified by flash column chromatography (4:1 to 3:2 EtOAc/MeOH), and the isolated compound was dissolved in water and lyophilized to afford the triazole 5a (16.5 mg, 20%) as a white solid. \([\alpha]_D^{20}\): -10.4 (0.21, MeOH); \(^1\)H NMR (500 MHz, MeOD): 7.97 (s, 1H, ArH\text{triazole}), 7.79-7.66 (m, 4H, ArH), 7.39-7.29 (m, 4H, ArH), 5.54 (dd, \(J = 9.8\) Hz, \(J = 2.7\) Hz, 1H, H-1), 4.38-4.31 (m, 2H, CH\text{Fmoc}), 4.22 (t, \(J = 6.9\) Hz, 1H, CH\text{Fmoc}), 4.07 (m, 1H, H\(\alpha\)), 4.38-4.31 (m, 2H, H-2, H-6), 3.69 (dd, \(J = 12.3\) Hz, \(J = 5.2\) Hz, 1H, H-6'), 3.57-3.47 (m, 3H, H-3, H-4, H-5), 2.78 (t, \(J = 7.7\) Hz, 2H, H\(\gamma\), H\(\gamma'\)), 2.22-2.15 (m, 1H, H\(\beta\)), 2.04-1.97 (m, 1H, H\(\beta'\)); \(^{13}\)C NMR (125 MHz, MeOD): \(\delta 179.1\) (CO\text{2H}), 158.3 (C(O)N), 148.7, 145.5, 145.3, 142.6 (4\times Ar-C, C=C\text{triazole}), 128.8, 128.2, 126.3, 120.9 (8\times Ar-H), 122.5 (CH\text{triazole}), 89.6 (C-1), 81.1 (C-5), 78.4 (C-3), 74.1 (C-2), 70.9 (C-4), 67.8 (CH\text{Fmoc}), 62.5 (C-6), 57.0 (C\(\alpha\)), 48.5 (CH\text{Fmoc}), 33.9 (C\(\beta\)), 22.8 (C\(\gamma\)); HRMS (ESI\(^+\)) calced for C\(_{27}\)H\(_{30}\)N\(_4\)NaO\(_9\) (M+Na\(^+\)), 577.1910, found 577.1906.

\((S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-4-{1-(2-deoxy-2-fluoro-\beta-D-glucopyranosyl)[1,2,3]-triazol-4-yl}butanoic acid (6a)\)

To a deoxygenated (argon was bubbled for 20 min) solution of 2-deoxy-2-fluoro-\(\beta\)-D-glucopyranosyl azide (13 mg, 0.063 mmol) and \((S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)\)hex-5-ynoic acid (20 mg, 0.057 mmol) in MeCN (2 mL), cuprous bromide (0.2 mL of 10 mg/mL deoxygenated MeCN, 0.014 mmol) was added, followed by Et\(_3\)N (14 \(\mu\)L, 0.100 mmol) and water (0.16 mL). After 18 h, TLC (65:35 EtOAc/MeOH) indicated the formation of a product (R\(_f\) 0.19) and complete consumption of the amino acid starting material (R\(_f\) 0.44). The mixture was
concentrated in vacuo and purified by flash column chromatography (7:3 to 3:2 EtOAc/MeOH), and the isolated compound was dissolved in water and lyophilized to afford the triazole 6a (14 mg, 44%) as a white solid. [α]D20 20°: +5.8 (0.03, MeOH); 1H NMR (500 MHz, MeOD): δ 8.05 (s, 1H, ArH triazole), 7.79-7.66 (m, 4H, ArH), 7.39-7.28 (m, 4H, ArH), 5.87 (m, 1H, H-1), 4.84-4.73 (m, 1H, H-2), 4.39-4.32 (m, 2H, CH2 Fmoc), 4.22 (t, J = 6.7 Hz, 1H, CHFmoc), 4.08 (m, 1H, Hα), 3.88-3.80 (m, 2H, H-3, H-6'), 3.69 (dd, JH6-H6' = 12.3 Hz, JH6-H5 = 5.3 Hz, 1H, H-6), 3.63-3.59 (m, 1H, H-5), 3.54 (t, J = 9.5 Hz, 1H, H-4), 2.78 (t, J = 7.6 Hz, 2H, Hγ', Hγ'), 2.19 (m, 1H, Hβ'), 2.01 (m, 1H, Hβ'); 13C NMR (125 MHz, MeOD): δ 158.3 (OC(O)N), 149.1, 145.1, 145.5, 145.3, 145.65, 142.63 (4×Ar-C, C=C triazole), 128.8, 128.2, 126.3, 120.9 (8×Ar-H), 122.7 (CHtriazole), 92.2 (d, JC3-F = 188.1 Hz, C-2), 86.5 (d, JC1-F = 24.2 Hz, C-1), 81.2 (C-5), 76.5 (d, JC2-F = 16.7 Hz, C-3), 70.7 (d, JC4-F = 7.9 Hz, C-4), 67.8 (CH2 Fmoc), 62.2 (C-6), 57.4 (Cα), 48.3 (CHFmoc), 33.8 (Cβ), 22.9 (Cγ); 19F{1H} NMR (MeOD, 470.4 MHz): δ –200.5 (s, F-2).; HRMS (ES+) for (M+Na) C27H29N4NaO8 (m/z): calc. 579.1862; found 579.1860.

(S)-2-(9H-fluoren-9-ylmethoxy carbonylamino)-4-{1-(2-deoxy-2-fluoro-D-mannopyranosyl)[1,2,3]-triazol-4-yl}butanoic acid (7a)

To a deoxygenated (argon was bubbled for 20 min) solution of 2-deoxy-2-fluoro-β-D-mannopyranosyl azide (11 mg, 0.053 mmol) and (S)-2-(9H-fluoren-9-ylmethoxy carbonylamino)hex-5-ynoic acid (17 mg, 0.048 mmol) in MeCN (2 mL), cuprous bromide (0.35 mL of 5 mg/mL deoxygenated MeCN, 0.012 mmol) was added, followed by Et3N (12 μL, 0.086 mmol) and water (0.13 mL). After 16.5 h, fresh cuprous bromide (0.15 mL, 0.005 mmol) and Et3N (4 μL, 0.028 mmol) were added. After 44 h, TLC (3:2 EtOAc/MeOH) indicated the formation of a product (Rf 0.18) and almost complete consumption of the amino acid starting material (Rf 0.44).
The mixture was concentrated \textit{in vacuo} and purified by flash column chromatography (3:1 to 3:2 EtOAc/MeOH), and the isolated compound was dissolved in water and lyophilized to afford the triazole \textit{7a} (5.9 mg, 21\%) as a white solid. [\(\alpha\)]\textsubscript{D}20 = -1.4 (0.10, MeOH); 1H NMR (CD\textsubscript{3}OD, 500 MHz) \(\delta\) in ppm: 7.97 (s, 1H, ArH \text{triazole}), 7.77–7.64 (m, 4H, ArH), 7.37–7.27 (m, 4H, ArH), 6.06 (d, \(J_{1,F} = 22.1\) Hz, 1H, H-1), 4.92 (d, \(J_{2,F} = 50.8\) Hz, 1H, H-2), 4.32 (m, 2H, CH\textsubscript{2}Fmoc), 4.20 (m, 1H, CH\textsubscript{Fmoc}), 4.07 (m, 1H, H\(\alpha\)), 3.91–3.71 (m, 4H, H-3, H-4, H-6a,b), 3.54 (m, 1H, H-5), 2.74 (m, 2H, H\(\gamma\), H\(\gamma\)'), 2.16 (m, 1H, H\(\beta\)), 1.99 (m, 1H, H\(\beta\)'); 13C NMR (CD\textsubscript{3}OD, 125 MHz) \(\delta\) in ppm: 158.2 (OC(O)N), 148.8, 145.7, 145.4, 142.8 (4\(\times\)Ar-C, C=C\text{triazole}), 128.8, 128.3, 126.5, 126.4, 122.9, 121.0 (8\(\times\)Ar-H, CH\text{triazole}), 91.8 (d, \(J_{2,F} = 186.5\) Hz, C-2), 86.4 (d, \(J_{1,F} = 15.8\) Hz, C-1), 81.46, 81.44 (C-5), 73.7 (d, \(J_{1,F} = 17.7\) Hz, C-3), 67.9, 67.8 (C-4, CH\text{Fmoc}), 62.51(C-6), 57.4 (C\(\alpha\)), 48.3 (CH\text{Fmoc}), 34.2 (C\(\beta\)), 23.0 (C\(\gamma\)); 19F NMR (CD\textsubscript{3}OD, 470.4 MHz) \(\delta\) in ppm: -218.3 (m, F-2); HRMS (ES+) for (M+Na) C\textsubscript{27}H\textsubscript{29}N\textsubscript{4}NaO\textsubscript{8} (m/z): calc. 579.1862; found 579.1857.

\textbf{(S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-4-\{1-(2-deoxy-2-fluoro-\(\beta\)-D-galactopyranosyl)\[1,2,3\]-triazol-4-yl\}butanoic acid (8a)}

To a deoxygenated (argon was bubbled for 20 min) solution of 2-deoxy-2-fluoro-\(\beta\)-D-galactopyranosyl azide (11 mg, 0.053 mmol) and (S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)hex-5-ynoic acid (16 mg, 0.046 mmol) in MeCN (1 mL), cuprous bromide (0.2 mL of 6 mg/mL deoxygenated MeCN, 0.008 mmol) was added, followed by Et\textsubscript{3}N (12 \(\mu\)L, 0.086 mmol) and water (0.11 mL). After 2h, fresh cuprous bromide (0.2 mL, 0.008 mmol) was added. After 18 h, TLC (3:2 EtOAc/MeOH) indicated the formation of a product (R\textsubscript{f} 0.18) and almost complete consumption of the amino acid starting material (R\textsubscript{f} 0.44). The mixture was concentrated \textit{in vacuo} and purified by flash column chromatography (3:1 to 3:2 EtOAc/MeOH), and the isolated compound was dissolved in water and lyophilized to afford the triazole 8a (8.4 mg,
33%) as a white solid. \([\alpha]_D^{20}: +2.0 (0.3, \text{MeOH})\); \(^1\)H NMR (500 MHz, MeOD): \(\delta 8.55\) (br s, 1H, NH), 8.06 (s, 1H, ArH\(_{\text{triazole}}\)), 7.79-7.67 (m, 4H, ArH), 7.39-7.29 (m, 4H, ArH), 5.82 (dd, \(J_{H1\text{-}H2} = 8.9 \text{ Hz}, \ J_{H1\text{-}F} = 3.2 \text{ Hz}, \ 1\text{H, H-1}\)), 5.06 (dt, \(J_{H2\text{-}F} = 51.6 \text{ Hz}, \ J_{H2\text{-}H1} = 9.1 \text{ Hz}, \ J_{H2\text{-}H3} = 9.1 \text{ Hz}, \ 1\text{H, H-2}\)), 4.40-4.32 (m, 2H, CH\(_2\) Fmoc), 4.23 (t, \(J = 6.7 \text{ Hz}, \ 1\text{H, CHFmoc}\)), 4.09 (m, 1H, H\(_\alpha\)), 4.03 (m, 1H, H-4), 3.99-3.96 (m, 1H, H-3), 3.89 (m, 1H, H-5), 3.78 (dd, \(J_{H6\text{-}H6'} = 11.5 \text{ Hz}, \ J_{H6\text{-}H5} = 6.9 \text{ Hz}, \ 1\text{H, H-6}\)), 3.72 (dd, \(J_{H6'\text{-}H6} = 11.6 \text{ Hz}, \ J_{H6'\text{-}H5} = 4.8 \text{ Hz}, \ 1\text{H, H-6'}\)), 2.78 (t, \(J = 7.8 \text{ Hz}, \ 2\text{H, H_7, H_7'}\)), 2.19 (m, 1H, H\(\beta\)), 2.01 (m, 1H, H\(\beta'\)); \(^1^3\)C NMR (125 MHz, MeOD): \(\delta 170.3\) (C=O), 158.3 (OC(O)N), 149.3, 145.6, 145.3, 145.65, 142.63 (4\(\times\)Ar-C, C=\(\text{C_triazole}\)), 128.8, 128.2, 126.3, 120.9 (8\(\times\)Ar-H), 122.3 (CH\(_{\text{triazole}}\)), 91.6 (d, \(J_{C2\text{-}F} = 184.2 \text{ Hz}, \ C-2\)), 87.1 (d, \(J_{C1\text{-}F} = 25.0 \text{ Hz}, \ C-1\)), 80.1 (C-5), 73.5 (d, \(J_{C3\text{-}F} = 16.8 \text{ Hz}, \ C-3\)), 71.0 (d, \(J_{C4\text{-}F} = 8.5 \text{ Hz}, \ C-4\)), 67.8 (CH\(_2\) Fmoc), 62.2 (C-6), 57.5 (C\(\alpha\)), 48.4 (CH\(_{\text{Fmoc}}\)), 33.9 (C\(\beta\)), 22.9 (C\(\gamma\)); \(^{19}\)F NMR (MeOD, 470.4 MHz): \(\delta -208.9\) (dddd, \(J_{J_{2\text{-}F}} = 51.4 \text{ Hz}, \ J_{J_{3\text{-}F}} = 13.9 \text{ Hz}, \ J_{J_{4\text{-}F}} = 2.9 \text{ Hz}, \ J_{J_{4\text{-}F}} = 2.9 \text{ Hz}, \ F-2\)); HRMS (ES\(^+\)) for (M+Na) C\(_{27}\)H\(_{29}\)N\(_4\)NaO\(_8\) (m/z): calc. 579.1862; found 579.1860.

\((S)-2-(9H\text{-fluoren-9-ylmethoxycarbonylamino})-4\{4-[(\alpha-D-mannopyranosyloxy)methyl]-[1,2,3]\text{-triazol-1-yl}\}\text{butanoic acid (9a)}\)

\[
\text{FmocHN} \overset{\text{N}_3}{\text{CO}_2\text{H}} \quad \text{9a}
\]

To a solution of 1-O-(2'-Propargyl)-\(\alpha\)-D-mannopyranoside (41 mg, 0.188 mmol) and (S)-4-Azido-2-(9H-fluoren-9-ylmethoxycarbonylamino)butanoic acid (68.8 mg, 0.188 mmol) in H\(_2\)O/tBuOH (2:1, 1.5 mL) under argon conditions, phenylenediamine (75 \(\mu\)g of a 375 mM solution in H\(_2\)O, 28.1 \(\mu\)mol), sodium ascorbate (75 \(\mu\)g of a 250 mM solution in H\(_2\)O, 18.7 \(\mu\)mol) and copper sulphate pentahydrate (75 \(\mu\)g of a 125 mM solution in H\(_2\)O, 9.37 \(\mu\)mol) were added and stirred at rt. After 3h, charcoal (75 mg) was added to the reaction mixture and stirred overnight. TLC (3:2 EtOAc/MeOH) indicated the formation of a product (R\(_f\) 0.13) and almost complete consumption of
the amino acid starting material (Rf 0.62). The reaction mixture was then filtered through a Celite plug, eluted with H₂O, and evaporated. The crude was purified by flash column chromatography (3:1 to 3:2 EtOAc/MeOH), and the isolated compound was dissolved in water and lyophilized to afford the triazole 9a (10 mg, 9%) as a white solid. [α]D²⁰: +42.5 (0.12, MeOH); ¹H NMR (500 MHz, MeOD): δ 8.05 (s, 1H, ArH₉₃₃), 7.82-7.70 (m, 4H, ArH), 7.42-7.31 (m, 4H, ArH), 4.83 (H₁), 4.80 (d, J = 12.4 Hz, 1H, OCH₂), 4.65 (d, J = 12.4 Hz, 1H, OCH₂), 4.47-4.37 (m, 4H, H₁, H₂, H₃'), CH₂ₙ₃₃, 4.25 (t, J = 6.5 Hz, 1H, CH₂ₙ₃₃), 4.05 (dd, J = 7.3 Hz, J = 4.6 Hz, 1H, Hα), 3.87 (ad, J = 11.7 Hz, 1H, H-6'), 3.80 (m, 1H, H-2), 3.75-3.70 (m, 2H, H-3, H-6'), 3.64-3.60 (m, 2H, H-4, H-5), 2.49-2.42 (m, 1H, Hβ), 2.25-2.18 (m, 1H, Hβ'); ¹³C NMR (125 MHz, CDCl₃): δ 170.4 (CO₂H), 158.3 (OC(O)N), 145.5, 145.3, 145.2, 142.67, 142.64 (8Ar-C, C=C triazole), 128.8, 128.2, 126.3, 120.9 (8Ar-H), 125.6 (CH₉₃₃), 100.7 (C-1), 75.0 (C-5), 72.5 (C-3), 72.1 (C-2), 68.7 (C-4), 67.8 (CH₂ₙ₃₃), 63.0 (C-6), 60.7 (OCH₂), 55.3 (Cα), ~48.5 (Cγ), ~48.5 (CH₂ₙ₃₃), 35.1 (Cβ); HRMS (ES⁺) for (M+Na) C₂₈H₃₂N₄NaO₁₀ (m/z): calc. 607.2016; found 607.2009.

(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-N-(tert-butoxycarbonyl)-D/L-cysteine methyl ester (10a)

![Chemical Structure](image)

2-Acetamido-2-deoxy-1-thio-β-D-glucopyranose (418.1 mg, 1.76 mmol) and K₂CO₃ (492 mg, 3.52 mmol) were added as a solids to a solution of BocDhaOMe¹² (390 mg, 1.94 mmol) in dry DMF (8.8 mL) at room temperature under argon atmosphere. The reaction mixture was stirred at the same temperature for 2 h and then concentrated under reduced pressure. The residue was purified by column chromatography (7:2:1 EtOAc/MeOH/H₂O) to afford 10a (250 mg, 32%) as a white fluffy solid being a diastereomeric mixture (D:L, 1:1.2). Rᵣ (7:2:1 EtOAc/MeOH/H₂O): 0.32. ¹H NMR (CD₃OD, 500 MHz) δ in ppm: 4.53, 4.47 (d, J₁₂ = 10.4 Hz, 2H, H-1), 4.46–4.41 (m, 2H, Hα), 3.93 (d, J₉₃₃ = 12.0 Hz, 1H, H-6a), 3.89 (d, J₉₃₃ = 12.9 Hz, 1H, H-6a), 3.82 (dd, J₁₂ = 10.4 Hz, J₂₃ = 10.1 Hz, 1H H-2), 3.74–3.69 (m, 3H, H-2,6b), 3.73, 3.72 (s, 6H, OCH₃), 3.44 (dd, J₂₃ = J₃₄ = 9.4 Hz, 2H, H-3), 3.40–3.28 (m, 5H, H-4,5, SCH₂),

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
3.10 (dd, J = 14.2, 7.6 Hz, 1H, SCH₂), 3.00 (dd, J = 14.2, 7.6 Hz, 1H, SCH₂), 2.81 (dd, J = 14.2, 8.5 Hz, 1H, SCH₂), 1.97 (s, 6H, CH₃, NHAc), 1.46 (s, 18H, t-Bu). ¹³C NMR (CD₃OD, 125.8 MHz) δ in ppm: 173.74, 173.73, 173.5, 173.4 (CO₂Me, NHAc), 158.1, 158.0 (C=O, NHBoc), 87.3, 85.4 (C-1), 82.8, 82.3 (C-5), 81.2, 81.1 (C, t-Bu), 77.4, 77.3 (C-3), 72.0, 71.7 (C-4), 63.1, 62.8 (C-6), 56.4 (C-2), 55.8 (C₆), 55.7 (C₅), 53.0 (OCH₃), 34.3, 32.4 (SCH₂), 28.8, 28.9 (6CH₃, t-Bu) 23.1 (CH₃, NHAc).

N-(9H-fluoren-9-ylmethoxycarbonyl)-S-(2-N-acetylamino-2-deoxy-1-dithio-β-D-glucopyranosyl disulfide)-L-cysteine (11a)

N-(9H-fluoren-9-ylmethoxycarbonyl)-L-cysteine (38.8 mg, 0.113 mmol) and phenyl selenyl bromide (60 mg, 0.254 mmol) were dissolved in a mixture of anhydrous dioxane (1 mL) and methanol (0.7 mL). Et₃N (49 μL) was added to the resulting mixture and stirred at rt overnight. TLC (4:1 EtOAc/MeOH) indicated the formation of a major product (Rf 0.29); the solution was concentrated in vacuo. The residue was filtrated in a short pad of silica (9:1 EtOAc/MeOH) and used in the next step without further purification (56 mg, quant.); LRMS (ES⁻) for (M−H) C₂₄H₂₀NO₄SSe (m/z): calc. 498.03; found 498.03.

Finally, N-(9H-fluoren-9-ylmethoxycarbonyl)-S-(phenylselenelyl)-L-cysteine (56 mg, 0.113 mmol) and Et₃N (31 μL, 0.222 mmol) were dissolved in anhydrous methanol (4 mL) under argon conditions at rt. A solution of 2-N-acetylamino-2-deoxy-1-thio-β-D-glucopyranose (26 mg, 0.109 mmol) in methanol (5 mL) was added dropwise over 5 min and the mixture was stirred at rt. After 2.5 h, TLC (7:2:1 EtOAc/MeOH/H₂O) indicated the formation of a product (Rf 0.36). The mixture was quenched with TFA (20 μL), evaporated in vacuo and purified by flash column chromatography (7.5:2:0.5 EtOAc/MeOH/H₂O) to afford the disulfide 11a (47.5 mg, 75%) as a white solid;
[α]D 20°: −56.2 (c 0.3, MeOH); 1H NMR (500 MHz, MeOD): δ 7.79-7.64 (m, 4H, ArH), 7.39-7.26 (m, 4H, ArH), 4.59 (d, J1,2 = 10.3 Hz, 1H, H-1), 4.49 (dd, J = 8.3 Hz, J = 3.4 Hz, 1H, Hα), 4.36 (dd, J = 9.2 Hz, J = 7.0 Hz, 1H, CH2 Fmoc), 4.29-4.18 (m, 2H, H-2, CH2 Fmoc), 3.96 (t, J = 10.0 Hz, 1H, CH Fmoc), 3.90 (ad, J6,6' = 12.2 Hz, 1H, H-6'), 3.73-3.69 (m, 1H, H-6), 3.54-3.50 (m, 1H, H-3), 3.44 (dd, J = 13.5 Hz, J = 3.8 Hz, 1H, SCH2), 3.40-3.37 (m, 2H, H-4, H-5), 3.04 (dd, J = 13.4 Hz, J = 9.2 Hz, 1H, SCH2), 1.98 (s, 3H, CH3); 13C NMR (125 MHz, MeOD): δ 177.4 (C=O), 173.6 (CO2H), 158.4 (OC(O)N), 145.37, 145.31, 142.5 (4Ar-C), 128.8, 128.23, 128.21, 126.4, 126.3, 120.9 (8Ar-H), 91.4 (C-1), 82.5 (C-5), 77.3 (C-3), 71.6 (C-4), 68.0 (CH2 Fmoc), 62.8 (C-6), 56.6 (Cα), 55.4 (CHFmoc), 48.5 (C-2), 43.9 (SCH2), 23.0 (CH3); HRMS (ES-) for (M-H) C26H29N2O9S2 (m/z): calc. 577.1314; found 577.1316.

2.2. Enzymatic extension of glycoamino acids

General method for the enzymatic extension of glycoamino acids 2a–11a
To a solution of glycoamino acid 2a–11a (0.2 μmol) in 50 mM sodium phosphate buffer (100 or 1000 μL, pH 6 or 7), disaccharide oxazoline 1 (0.6 μmol) and Endo A (3 μL of a 0.01 U/μL) were added and the mixture was rotated on a lab rotisserie at 22 or 27 ºC. Aliquotes were taken through one day, diluted in water and spun down in a vivaspin-500 concentrator 10KDa MWCO (13.000 g, 8 min). The eluyent was analyzed by RP–HPLC and MS (ES−). Reaction conditions were reproduced in a similar sample without Endo-A as control reaction.

Method A: pH 6.0, c 0.2 mM, 27 ºC; Method B: pH 7.0, c 0.2 mM, 27 ºC; Method C: pH 7.0, c 2 mM, 22 ºC; Method D: pH 7.0, c 0.2 mM, 22 ºC; Method E: pH 7.0, c 6 mM, 22 ºC.

Conditions for RP–HPLC: For compounds 2b–9b [Phenomenex Onyx Monolithic C18 (100 × 4.6mm) column; flow rate was 1 mL/min; gradient run, 0–1 min 5%B, 1–15 min linear gradient 5 to 50%B, 18–20min linear gradient 50 to 90%B, 20–22 min 90%B, 22-24 min linear gradient 90-5%B, 24-26 min 5%B; UV monitoring 214 nm];
For compounds 10b–11b [Phenomenex Synergi 4u Fusion-RP 80A (100 × 4.6mm) column; flow rate was 1 mL/min; gradient run, 0-3 min 5%B, 3-15 min linear gradient 5 to 55%B, 15-18min linear gradient 55 to 90%B, 18–20 min 90%B, 20-22 min linear gradient 90-5%B, 22-24 min 5%B; UV monitoring 214 nm].
Endo A-catalyzed glycosylation of GlcNAc-Asn 2a

Man-GlcNAc-GlcNAc-Asn 2b was prepared following the method A above, starting from GlcnNAc-Asn 2a (37 μL of 1.5 mg/0.5 mL buffer, 0.199 μmol), oxazoline 1 (58 μL of 1.9 mg/0.5 mL buffer, 0.603 μmol) and Endo A (2 μL of 0.01 U/μL stock) in 50 mM sodium phosphate buffer (903 μL, pH 6) at 27 ºC. Additional amount of oxazoline 1 (58 μL at 2.75, 5.25 and 23 h) and Endo-A (5 μL at 2.75 and 23 h) were added to the reaction. 40 μL samples were taken through 1 day (0.5 h, 1 h, 2 h, 4 h, 6 h, 22 h, 24 h, 29 h), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 25% at 29h; LRMS (TOF ES−) for (M–H) C_{41}H_{54}N_{4}O_{20} (m/z): calc. 921.3; found 921.3.

Figure S1. HPLC analysis after 29 h incubation of 2a (0.2 mM) with Endo A.
Endo A-catalyzed glycosylation of GlcNAc-\textsuperscript{OCH\textsubscript{2}}-triazole-amino acid 3a

Trisaccharide amino acid 3b was prepared following the method A above, starting from glycoamino acid 3a (37 \textmu L of 1.7 mg/0.5 mL buffer, 0.201 \textmu mol), oxazoline 1 (55 \textmu L of 2 mg/0.5 mL buffer, 0.602 \textmu mol) and Endo A (2 \textmu L of 0.01 U/\mu L stock) in 50 mM sodium phosphate buffer (906 \textmu L, pH 6) at 27 °C. Additional amount of oxazoline 1 (55 \textmu L at 1.5, 18.75 and 23.5 h) and Endo-A (5 \textmu L at 1.5 h) were added to the reaction. 40 \textmu L samples were taken through 2 days (0.5 h, 1 h, 2.5 h, 3.5 h, 18 h, 22.5 h, 24.5 h, 48 h), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 78\% at 48h; LRMS (TOF ES–) for (M–H) \textsubscript{C}_{44}\textsubscript{H}_{57}\textsubscript{N}_{6}\textsubscript{O}_{20} (m/z): calc. 989.3; found 989.3.

Figure S2. HPLC analysis after incubation of 3a with Endo A following method A.
Endo A-catalyzed glycosylation of GlcNAc-triazole-amino acid 4a

Trisaccharide amino acid 4b was prepared following the method A above, starting from glycoamino acid 4a (50 μL of 1.2 mg/0.5 mL buffer, 0.201 μmol), oxazoline 1 (73 μL of 1.5 mg/0.5 mL buffer, 0.599 μmol) and Endo A (2 μL of 0.01 U/μL stock) in 50 mM sodium phosphate buffer (875 μL, pH 6) at 27 °C. Additional amount of oxazoline 1 (73 μL at 4, 9, 25.5 and 32 h) and Endo-A (2 μL at 7 and 25.5 h and 5 μL at 32 h) were added to the reaction. 40 μL samples were taken through 2 days (0.5 h, 1 h, 2 h, 4 h, 5 h, 6 h, 8 h, 24 h, 27 h, 30 h, 31 h, 33 h, 48 h), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 83% at 48h; HRMS (TOF ES−) for (M−H) C_{43}H_{54}N_{6}O_{19} (m/z): calc. 959.3522; found 959.3530.

Figure S3. HPLC analysis after incubation of 4a with Endo A following method A.
Figure S4. HPLC comparison of glycosylation of 4a following methods A and B.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>HPLC 4b:4a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1h</td>
<td>74:26</td>
</tr>
<tr>
<td>3h</td>
<td>63:37</td>
</tr>
<tr>
<td>6h</td>
<td>61:39</td>
</tr>
<tr>
<td>8h</td>
<td>61:39</td>
</tr>
</tbody>
</table>

Figure S5. HPLC analysis after incubation of 4a with Endo A following method C.

Endo A-catalyzed glycosylation of Glc-triazole-amino acid 5a

Trisaccharide amino acid 5b was prepared following the method C above, starting from glycoamino acid 5a (112 μg, 0.202 μmol), oxazoline 1 (220 μg, 0.602 μmol) and Endo A (3 μL of 0.01 U/μL stock) in 50 mM sodium phosphate buffer (100 μL,
pH 7) at 22 °C. 8 μL samples were taken through 1 day, diluted with water (30 μL), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 50% at 4h; HRMS (TOF ES⁻) for (M–H) C₄₁H₅₂N₅O₁₉ (m/z): calc. 918.3256; found 918.3291.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>HPLC 5b:5a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2h</td>
<td>46:54</td>
</tr>
<tr>
<td>4h</td>
<td>50:50</td>
</tr>
<tr>
<td>6h</td>
<td>37:63</td>
</tr>
<tr>
<td>8h</td>
<td>37:63</td>
</tr>
<tr>
<td>21h</td>
<td>37:63</td>
</tr>
</tbody>
</table>

Figure S6. HPLC analysis after incubation of 5a with Endo A following method C.
Endo A-catalyzed glycosylation of Glc2F-triazole-amino acid 6b

Trisaccharide amino acid 6b was prepared following the method C above, starting from glycoamino acid 6a (110 µg, 0.198 µmol), oxazoline 1 (221 µg, 0.604 µmol) and Endo A (3 µL of 0.01 U/µL stock) in 50 mM sodium phosphate buffer (100 µL, pH 7) at 22 ºC. 8 µL samples were taken through 1 day, diluted with water (30 µL), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 34% at 3h; HRMS (TOF ES−) for (M–H) C_{41}H_{51}FN_{5}O_{18} (m/z): calc. 920.3213; found 920.3227.

Figure S7. HPLC analysis after incubation of 6a with Endo A following method C.
Endo A-catalyzed glycosylation of Man2F-triazole-amino acid 7a

Trisaccharide amino acid 7b was prepared following the method C above, starting from glycoamino acid 7a (110 μg, 0.198 μmol), oxazoline 1 (221 μg, 0.604 μmol) and Endo A (3 μL of 0.01 U/μL stock) in 50 mM sodium phosphate buffer (100 μL, pH 7) at 22 °C. 8 μL samples were taken through 1 day, diluted with water (30 μL), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 38% at 24h; LRMS (TOF ES+) for (M–H) C_{41}H_{51}FN_{5}O_{18} (m/z): calc. 920.3; found 920.3.

Figure S8. HPLC analysis after incubation of 7a with Endo A following method C.
Endo A-catalyzed glycosylation of Gal2F-triazole-amino acid 8a

Trisaccharide amino acid 8b was prepared following the method C above, starting from glycoamino acid 8a (110 µg, 0.198 µmol), oxazoline 1 (221 µg, 0.604 µmol) and Endo A (3 µL of 0.01 U/µL stock) in 50 mM sodium phosphate buffer (100 µL, pH 7) at 22 °C. 8 µL samples were taken through 1 day, diluted with water (30 µL), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 0% at 24h.

Figure S9. HPLC analysis after incubation of 8a with Endo A following method C.

Endo A-catalyzed glycosylation of Man-triazole-amino acid 9a
Trisaccharide amino acid 9b was prepared following the method C above, starting from glycoamino acid 9a (117 μg, 0.201 μmol), oxazoline 1 (219 μg, 0.600 μmol) and Endo A (3 μL of 0.01 U/μL stock) in 50 mM sodium phosphate buffer (100 μL, pH 7) at 22 ºC. 8 μL samples were taken through 1 day, diluted with water (30 μL), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 0% at 24h.

![Figure S10. HPLC analysis after incubation of 9a with Endo A following method C.](image)

Endo A-catalyzed glycosylation of GlcNAc-S-amino acid 10b

Trisaccharide amino acid 10b was prepared following the method C above, starting from a 1:1.2 mixture of diastereomers of glycoamino acid 10a (87.7 μg, 0.2 μmol), oxazoline 1 (731 μg, 2 μmol) and Endo A (9 μL of 0.01 U/μL stock) in 50 mM sodium phosphate buffer (100 μL, pH 7) at 22 ºC. 18 μL samples were taken through 17 h, diluted with water (25 μL), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 89% at 1h. HRMS (TOF ES+) for (M+Na) C_{31}H_{53}N_{3}NaO_{19}S (m/z): calc. 826.2886; found 826.2891.
Figure S11. HPLC analysis after 0–17h incubation of 10a with Endo A following method C with excess of oxazoline 1 and Endo A.

Endo A-catalyzed glycosylation of GlcNAc-SS-amino acid 11a

Trisaccharide amino acid 11b was prepared following the method E above, starting from glycoamino acid 11a (109 µg, 0.199 µmol), oxazoline 1 (218 µg, 0.600 µmol) and Endo A (3 µL of 0.01 U/µL stock) in 50 mM sodium phosphate buffer (33 µL, pH 7) at 22 ºC. 5 µL samples were taken through 1 day, diluted with water (20 µL), centrifuged in vivaspin-500 and analyzed by HPLC and MS; Conversion by HPLC: 98% at 0.5h. HRMS (TOF ES⁻) for (M–H) C_{40}H_{52}N_{3}O_{19}S_{2} (m/z): calc. 942.2636; found 942.2671.
2.3. Preparation of glycopeptides 12a–14a

GlcNAc-triazole linked peptide (12a)

Glycopeptide 12a was synthesized by means of Fmoc-chemistry on Rink amide MBHA-polystyrene resin [1% divinyl benzene, GL Biochem]. Every Fmoc-amino acid, included glycoamino acid 4a, was incorporated in the sequence using a microwave assisted Liberty CEM peptide synthesizer. Analytical HPLC analysis shown the formation of side peptide KTHQVLCTTQKTSD in around 50% yield, thus, the crude was purified onto semi-preparative RP–HPLC [Phenomenex Onyx-monolithic C18 (100x10mm) column; the flow rate was 10 mL/min; gradient run, 0-1 min 5%B, 1–15 min linear gradient 5 to 10%B, 15–18 min
10% B, 18–20 min linear gradient 10 to 90% B, 20–22 min 90% B, 22–24 min linear gradient 90–5% B, 24–26 min 5% B; UV monitoring 214 nm]. The pure fraction was lyophilized to afford glycopeptide 12a as an amorphous solid. LC–MS analysis (calculated mass 1943, observed mass 1942).

Figure S14. Analytical-HPLC analysis of 12a solid phase synthesis.

Figure S15. ESI–MS spectrum of purified glycopeptide 12a.

\[
\text{H}_2\text{N-Lys-Thr-His-Gln-Val-Leu-Cys-Aha-Thr-Thr-Gln-Lys-Thr-Ser-Asp-C(O)NH}_2
\]

Gp90 peptide fragment\(^\text{13}\) (361-375 Lys-Thr-His-Gln-Val-Leu-Cys-Aha-Thr-Thr-Gln-Lys-Thr-Ser-Asp) was synthesized by means of Fmoc-chemistry on Rink amide MBHA-polystyrene resin [1% divinyl benzene, GL Biochem]. Every Fmoc-amino acid, included (S)-4-Azido-2-(9H-fluoren-9-ylmethoxycarbonylamino)butanoic acid, was incorporated in the sequence using a microwave assisted Liberty CEM peptide synthesizer. Analysis by LC–MS (calculated mass 1713.9, observed mass 1715.4).
GlcNAc-OCH$_2$-triazole linked peptide (13a)

A freshly prepared solution of copper(I) bromide (99.999%) in acetonitrile (660 μL of 10 mg/mL) was mixed with a solution of tris-triazolyl amine ligand 2,2',2''-(4,4',4''-nitrilotris(methylene)tris(1H-1,2,3-triazole-4,1-diyl))triacetate in acetonitrile (250 μL of 120 mg/mL). The preformed Cu-complex solution (760 μL) was added to a solution of peptide KTHQVLCAhaTTQKTSD (14 mg, 8.163 μmol) and propargyl 2-N-acetylamino-2-deoxy-β-D-glucopyranoside (22 mg, 84.8 μmol) in 50 mM sodium phosphate buffer (3.3 mL, pH 8.2), and mixed on a lab rotisserie for 2 h at rt. The mixture was then centrifuged to remove any precipitate of Cu(II) salts (3000 rpm, 10 min, 4 °C), and the supernatant was concentrated and lyophilized. The resulting foam was then purified by HPLC [Phenomenex Onyx Monolithic C18 (100 × 10mm) column; flow rate was 15 mL/min; gradient run, 0–3 min 5%B, 3–15 min linear gradient 5 to 20%B, 15–18 min 20%B, 18–20 min linear gradient 20 to 90%B, 20–22 min 90%B, 22–24 min linear gradient 90–5%B, 24–26 min 5%B; UV monitoring 214 nm] to afford peptide 13a (7.1 mg, 44%) as a foam. LC–MS analysis (calculated mass 1973, observed mass 1975).

Figure S16. ESI–MS spectrum of peptide KTHQVLCAhaTTQKTSD.

Figure S17. Analytical-HPLC analysis of 13a after purification.
SBL peptide fragment (153-161; Ser-Gly-Asn-Cys-Gly-Ala-Gly-Ser-Ile) was synthesized by means of Fmoc-chemistry on Rink amide MBHA-polystyrene resin [1% divinyl benzene, GL Biochem] using a microwave assisted Liberty CEM peptide synthesizer. HRMS (ESI) for (M+H) C_{28}H_{50}F_{2}N_{11}O_{12}S_{1} (m/z): calc. 764.3361; found 764.3354.

H_{2}N-Ser-Gly-Asn-Dha-Gly-Ala-Gly-Ser-Ile-C(O)NH_{2}

In a round bottom flask, o-mesitylenesulfonylhydroxylamine - MSH^{12} (13.9 mg, 0.064 mmol) was dissolved in DMF (0.65 mL). In a separate vial, peptide SGNCGAGSI (8 mg, 0.010 mmol) was dissolved in deoxygenated H_{2}O (2.5 mL) and sodium carbonate was added (11 mg, 0.104 mmol). The resulting solution was added by pipette over a period of 3 min to the stirred MSH solution at room temperature. The vial was washed with 0.5 mL of H_{2}O. The reaction was stirred for additional 9 min, and quenched with TFA (pH 4). The reaction mixture was purified by preparative HPLC [Phenomenex Synergi 4u Fusion-RP 80A (100 × 21.20mm) column; flow rate was 12 mL/min; gradient run, 0-3 min 5%B, 3–13 min linear gradient 5 to 15%B, 13–15min linear gradient 15 to 85%B, 15–17 min 85%B, 17–19 min linear gradient 85–5%B, 19-21 min
5%B; UV monitoring 214 nm] and the collected fractions were lyophilized to provide the desire peptide SGNDhaGAGSI (4.2 mg, 55%) along with an as of yet unidentified side product (3.1 mg, 41%, m/z 737.3200) as white solids; HRMS (ES⁺) for SGNDhaGAGSI (M+H) C₂₈H₄₈N₁₁O₁₂ (m/z): calc. 730.3484; found 730.3473.

Figure S19. Analytical HPLC analysis of purification of SGNDhaGAGSI.

GlcNAc-S-linked peptide (14a)

Peptide SGNDhaGAGSI(NH₂) (4 mg, 5.48 μmol) was dissolved in 250 mM sodium phosphate buffer (1 mL, pH 8.1, previously deoxygenated with argon). 2-acetamido-2-deoxy-1-thio-β-D-glucopyranose (10 mg, 0.042 mmol) was added as a solid and the reaction was stirred at room temperature under argon conditions. After 2.5 h, the reaction mixture was purified by preparative HPLC [Phenomenex Synergi 4u Fusion-RP 80A (100 × 21.20mm) column; flow rate was 12 mL/min; gradient run, 0–3 min 5%B, 3–13 min linear gradient 5 to 15%B, 13–15min linear gradient 15 to 85%B, 15–17 min 85%B, 17–19 min linear gradient 85–5%B, 19–21 min 5%B; UV monitoring 214 nm] to provide 14a as a mixture of diastereoisomers of (Rt 8.5: 1.7 mg, and Rt 8.9: 1.5 mg, 60%) as white solids; HRMS (ES⁺) for (M+H) C₃₆H₆₃N₁₂O₁₇S (m/z): calc. 967.4155; found 967.4152.
2.4. Enzymatic extension of glycopeptides

Endo A-catalyzed glycosylation of GlcNAc-triazole-peptide 12a

To a solution of oxazoline 1 (1.22 mg, 3.335 μmol) and glycopeptide 12a (572 μg, 0.294 μmol) in 50 mM sodium phosphate buffer (450 μL, pH 7), Endo-A (4 μL of 0.01 U/μL stock) was added and the mixture was rotated on a lab rotisserie at 22 °C. Aliquots were taken through one day, centrifuged in a vivaspin-500 concentrator 10KDa MWCO (12,000 g, 8 min) and analyzed by LC–MS (Onyx-monolithic C18 100x4.6mm column; ESI⁺). After 2h, >95% conversion was observed (calculated mass 2308, observed mass 2306).

![Figure S21. ESI–MS spectra after 2 h incubation of 12a with Endo A.](image-url)
Endo A-catalyzed glycosylation of GlcNAc-OCH$_2$-triazole-peptide 13a

To a solution of oxazoline 1 (1.77 mg, 4.844 μmol) and glycopeptide 13a (1.06 mg, 0.537 μmol) in 50 mM sodium phosphate buffer (800 μL, pH 7), Endo-A (6 μL of 0.01 U/μL stock) was added and the mixture was rotated on a lab rotisserie at 22 °C. Aliquots were taken through one day, centrifuged in a vivaspin-500 concentrator 10KDa MWCO (12,000 g, 8 min) and analyzed by LC–MS (Onyx-monolithic C18 100x4.6mm column; ESI+). Conversion of 77% was observed after 8 h (calculated mass 2338, observed mass 2340).

Figure S22. ESI–MS spectra after 8 h incubation of 13a with Endo A.

Endo A-catalyzed glycosylation of GlcNAc-S-peptide 14a (Rt 6.78 and Rt 7.27)

To a solution of oxazoline 1 (1.23 mg, 3.36 μmol) and one diastereomer 14a (441 μg, 0.45 μmol) in 50 mM sodium phosphate buffer (225 μL, pH 7), Endo-A (3 μL of 0.01 U/μL stock) was added and the mixture was rotated on a lab rotisserie at 22 °C. Aliquots
were taken, centrifuged in a vivaspin-500 concentrator 10KDa MWCO (12.000 g, 8 min) and analyzed by HPLC [Phenomenex Synergi 4u Fusion-RP 80A (100 × 4.6mm) column; flow rate was 1 mL/min; gradient run, 0-3 min 5%B, 3–12 min linear gradient 5 to 25%B, 12–18min linear gradient 25 to 85%B, 18–20 min 85%B, 20–22 min linear gradient 85–5%B, 22–24 min 5%B; UV monitoring 214 nm] and MS (ESI+). After 4h, >80% and >95% conversion were observed for diastereoisomer Rₜ 6.78 and Rₜ 7.27, respectively.

Figure S23. HPLC analysis after incubation of 14a (isomer Rₜ 6.78) with Endo A.

Figure S24. ESI–MS spectra after 4 h incubation of 14a (isomer Rₜ 6.78) with Endo A.

Figure S25. ESI–MS spectra after 4 h incubation of 14a (isomer Rₜ 7.27) with Endo A.
2.5. Preparation of S- SeS- and SS-linked glycoproteins 15a–24a

2.5.1 Synthesis of 2-deoxy-2-fluoro-1-thiosugars

2-Deoxy-2-fluoro-1-thio-β-D-mannopyranose

3,4,6-Tri-O-acetyl-2-deoxy-2-fluoro-1-thio-β-D-mannopyranose (32 mg, 0.087 mmol) was treated with 0.1M NaOMe in MeOH (610 μL) at room temperature. The reaction mixture was stirred at the same temperature for 15 minutes and neutralized with Dowex (H⁺ 50WX8–200). The ion exchanger was filtered off and washed with MeOH. After concentration under reduced pressure, crude product 2-Deoxy-2-fluoro-1-thio-β-D-mannopyranose (17.2 mg, 100%) was used in the next step without further purification. LRMS (TOF ES⁺) for (M–H) C₆H₁₀FO₄S (m/z): calc. 197.0; found 197.1.

2-Deoxy-2-fluoro-1-thio-β-D-glucopyranose

3,4,6-Tri-O-acetyl-2-deoxy-2-fluoro-1-thio-β-D-glucopyranose (42 mg, 0.115 mmol) was treated with 0.1M NaOMe in MeOH (805 μL) at room temperature. The reaction mixture was stirred at the same temperature for 15 minutes and neutralized with Dowex (H⁺ 50WX8–200). The ion exchanger was filtered off and washed with MeOH. The resulting solution was concentrated under reduced pressure to afford 2-deoxy-2-fluoro-1-thio-β-D-glucopyranose (22.8 mg, 100%) as a white solid. Used in the next step without further purification. LRMS (TOF ES⁻) for (M–H) C₆H₁₀FO₄S (m/z): calc. 197.0; found 197.1.

2.5.2 Synthesis of sugar diselenides

Bis(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-1,1'-diselenide

Potassium 4-methylselenobenzoate¹⁵ (215.7 mg, 0.910 mmol) was added to a mixture of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl chloride¹⁶ (250 mg, 0.455 mmol) and 18-crown-6 (240.4 mg, 0.910 mmol) in dry and degassed DMF (1.7 mL) at room temperature. The reaction mixture was stirred for 2 h. The crude was then diluted...
with EtOAc and washed with water. The combined organic layers were dried over MgSO$_4$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (from 1:1 to 2:1 EtOAc/petrol) to afford 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-1-Se-(4-methylbenzoyl)-1-seleno-β-D-glucopyranose (185 mg, 77%) as a white solid. R_f (2:1 EtOAc/petrol): 0.26; mp: 176–178 °C; [\(\alpha\)]$_D^{20}$: –30.0 (0.17, CH$_2$Cl$_2$); 1H NMR (CDCl$_3$, 500 MHz) δ in ppm: 7.75 (d, $J = 8.2$ Hz, 2H, Ar), 7.27 (d, $J = 8.2$ Hz, 2H, Ar), 5.70 (d, $J_{2,\text{NH}} = 9.6$ Hz, 1H, NH), 5.40 (d, $J_{1,2} = 10.7$ Hz, 1H, H-1), 5.21 (t, $J_{3,4} = J_{4,5} = 9.6$ Hz, 1H, H-4), 5.14 (t, $J_{2,3} = J_{3,4} = 9.6$ Hz, 1H, H-3), 4.56 (dd, $J_{1,2} = 10.7$ Hz, $J_{3,3} = J_{2,\text{NH}} = 9.6$ Hz, 1H, H-2), 4.28 (dd, $J_{6a,b} = 12.6$ Hz, $J_{5,6a} = 4.7$ Hz, 1H, H-6a), 4.13 (dd, $J_{6a,b} = 12.6$ Hz, $J_{5,6b} = 1.9$ Hz, 1H, H-6b), 3.84 (ddd, $J_{4,5} = 9.6$, $J_{5,6a} = 4.7$ Hz, $J_{5,6b} = 1.9$ Hz, 1H, H-5), 2.41 (s, 3H, CH$_3$, Ar), 2.09, 2.06 (s, 9H, 3CH$_3$, OAc), 1.88 (s, 3H, CH$_3$, NAc); 13C NMR (CDCl$_3$, 125.8 MHz) δ in ppm: 193.0 (C=O, SeBz), 171.3, 170.7, 170.0, 169.2 (C=O, 3OAc, NAc), 145.6, 135.5 (C, Ar), 129.7, 135.5 (CH, Ar), 81.4 (C-1), 77.6 (C-5), 74.2 (C-3), 67.8 (C-4), 61.9 (C-6), 53.5 (C-2), 23.2 (CH$_3$, NAc), 21.8 (CH$_3$, Ar), 20.8, 20.7, 20.6 (3CH$_3$, OAc); FT–IR (KBr) ν in cm$^{-1}$: 3283, 3062, 2957, 1747, 1685, 1664, 1232; HRMS (TOF ES+) for (M+Na) C$_{22}$H$_{27}$N$_2$NaO$_9$Se (m/z): calc. 552.0749; found 552.0748.

Finally, the title compound was prepared following the general procedure for the synthesis of 2-deoxy-2-fluoro-glycosyl azides described above, starting from 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-1-Se-(4-methylbenzoyl)-1-seleno-β-D-glucopyranose (100 mg, 0.189 mmol) and 0.1M NaOMe in MeOH (1.3 mL). After 30 min stirring at room temperature the reaction mixture was neutralized and concentrated under reduced pressure. The crude product was recrystallized from 1:2 MeOH/EtOAc to afford bis(2-Acetamido-2-deoxy-β-D-glucopyranosyl)-1,1'-diselenide (50.1 mg, 93%) as a white solid. R_f (2:5 MeOH/EtOAc): 0.09; mp: 165 ºC dec. (1:2 MeOH/EtOAc); [\(\alpha\)]$_D^{20}$: –241.4 (0.03, MeOH); 1H NMR (CD$_3$OD, 500 MHz) δ in ppm: 5.06 (d, $J_{1,2} = 10.1$ Hz, 1H, H-1), 3.89–3.77 (m, 3H, H-2,6a,b), 3.52 (dd, $J_{2,3} = 8.8$ Hz, $J_{3,4} = 9.1$ Hz, 1H, H-3), 3.44 (dd, $J_{4,5} = 8.8$ Hz, $J_{5,6a} = 9.1$ Hz, 1H, H-5), 3.32 (m, 1H, H-4), 1.99 (s, 3H, CH$_3$, NAc); 13C NMR (CD$_3$OD, 125.8 MHz) δ in ppm: 173.7 (C=O, NAc), 84.6 (C-1), 83.4 (C-4), 77.1 (C-3), 71.6 (C-5), 62.6 (C-6), 57.9 (C-2), 23.3 (CH$_3$, NAc); FT–IR (KBr) ν in cm$^{-1}$: 3267, 3096, 2925, 2908, 1640, 1562, 1056; HRMS (TOF ES+) for (M+Na) C$_{16}$H$_{28}$N$_2$NaO$_{10}$Se$_2$ (m/z): calc. 590.9967; found 590.9959.
Bis(β-D-glucopyranosyl)-1,1′-diselenide

The title compound was prepared following the general procedure for the synthesis of 2-deoxy-2-fluoro-glycosyl azides described above, starting from bis(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-1,1′-diselenide15, 17 (64.1 mg, 0.078 mmol) and 0.1M NaOMe in MeOH (546 μL). After 30 min stirring at room temperature the reaction mixture was neutralized and concentrated under reduced pressure. The crude product was recrystallized from 1:2 MeOH/EtOAc to afford bis(β-D-glucopyranosyl)-1,1′-diselenide (27.2 mg, 72%) as a white hygroscopic solid together with ca. 26% of the corresponding 1-selenopyranose. R\(_f\) (2:5 MeOH/EtOAc): 0.1; \(^1\)H NMR (CD\(_3\)OD, 500 MHz) δ in ppm: 4.76 (d, 1H, \(J_{1,2} = 9.8\) Hz, H-1), 3.88 (d, \(J_{6a,b} = 12\) Hz, H-6a), 3.71–3.64 (m, 2H, H-4,6b), (appt, \(J_{1,2} = J_{2,3} = 9.8\) Hz, H-2), 3.41–3.27 (m 2H, H-3,5); \(^{13}\)C NMR (CD\(_3\)OD, 125.8 MHz) δ in ppm: 84.9 (C-1), 83.6 (C-5), 79.5 (C-3), 75.1 (C-2), 71.4 (C-4), 63.0 (C-6); LRMS (TOF ES+) isotope ratios for (M+Na) \(\text{C}_{12}\text{H}_{22}\text{NaO}_{10}\text{Se}_{2}\) (\(m/z\)) (%): calc. 508.9 (100), 506.9 (86.6); found 509.0 (100), 507.0 (87). Spectroscopic data are in agreement with those reported in the literature.17

Bis(2-deoxy-2-fluoro-β-D-glucopyranosyl)-1,1′-diselenide

The title compound was prepared following the general procedure for the synthesis of 2-deoxy-2-fluoro-glycosyl azides described above, starting from bis(3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-β-D-glucopyranosyl)-1,1′-diselenide (35 mg, 0.047 mmol) and 0.1M NaOMe in MeOH (330 μL). After 15 min stirring at room temperature the reaction mixture was neutralized and concentrated under reduced pressure. The residue was purified by column chromatography (7:1 EtOAc/MeOH) to afford bis(2-deoxy-2-fluoro-β-D-glucopyranosyl)-1,1′-diselenide (16.1 mg, 100%) as a pale yellow solid. R\(_f\) (7:1 MeOH/EtOAc): 0.26; mp: 240 ºC dec; [α]\(_D\)20: +10.2 (0.16, MeOH); \(^1\)H NMR (CD\(_3\)OD, 500 MHz) δ in ppm: 4.96 (dd, 1H, \(J_{1,2} = 9.5\) Hz, \(J_{1,F} = 1.6\) Hz, H-1), 4.41 (ddd, 1H, \(J_{2,F} = 49.6\) Hz, \(J_{1,2} = J_{2,3} = 9.5\) Hz, H-2), 3.89 (d, \(J_{6a,b} = 12\) Hz, H-6a), 3.70–3.63 (m, 2H, H-3,6b), 3.36 (m 2H, H-4,5); \(^{13}\)C NMR (CD\(_3\)OD, 125.8 MHz) δ in ppm: 93.1 (d, \(J_{2,F} = 185.0\) Hz, C-2), 83.7 (C-5), 80.9 (d, \(J_{1,F} = 26.7\) Hz, C-1), 77.6 (d, \(J_{3,F} = 18.1\) Hz, C-3), 71.2 (d, \(J_{4,F} = 7.6\) Hz, C-4), 62.7 (C-6); \(^{19}\)F NMR (CD\(_3\)OD, 470.4 MHz) δ in ppm: –190.0 (ddd, \(J_{2,F} = 49.6\) Hz, \(J_{3,F} = 14.8\) Hz, \(J_{1,F} = 1.6\) Hz, F-2); FT–IR (KBr) ν in cm\(^{-1}\):
The title compound was prepared following the general procedure for the synthesis of 2-deoxy-2-fluoro-glycosyl azides described above, starting from 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-1-Se-(4-methylbenzoyl)-1-seleno-β-D-mannopyranose (35 mg, 0.066 mmol) and 0.1M NaOMe in MeOH (462 μL). After 30 min stirring at room temperature the reaction mixture was neutralized and concentrated under reduced pressure. The residue was purified by column chromatography (7:1 EtOAc/MeOH) to afford bis(2-deoxy-2-fluoro-β-D-mannopyranosyl)-1,1′-diselenide (16.1 mg, 100%) as a pale yellow solid. Rf (7:1 MeOH/EtOAc): 0.13; mp: 200 ºC dec; [α]D20: +26.8 (0.08, MeOH); 1H NMR (CD3OD, 500 MHz) δ in ppm: 5.42 (d, 1H, J1,F = 30.3 Hz, H-1), 4.97 (dd, 1H, J2,F = 50.4 Hz, J2,3 = 2.5 Hz, H-2), 3.91 (dd, J6a,b = 12 Hz, J5,6a = 1.9 Hz, H-6a), 3.70–3.59 (m, 3H, H-3,4,6b), 3.35 (m 1H, H-5); 13C NMR (CD3OD, 125.8 MHz) δ in ppm: 93.4 (d, J2,F = 179.3 Hz, C-2), 84.0 (C-5), 83.7 (d, J1,F = 19.1 Hz, C-1), 74.7 (d, J3,F = 19.1 Hz, C-3), 68.5 (C-4), 63.0 (C-6); 19F NMR (CDCl3, 470.4 MHz) δ in ppm: −210.1 (ddd, J2,F = 50.4 Hz, J1,F = 30.3 Hz, J3,F = 29.3 Hz, F-2); FT–IR (KBr) ν in cm−1: 3356, 2924, 2854, 1375, 1064, 1043; HRMS (TOF ES+) for (M+Na) C12H20F2NaO8Se2 (m/z): calc. 512.9352; found 512.9362.
2.5.3 Preparation of glycoproteins 15a–24a

Sequence of SBL-S156C (BPN' numbering, PDB code for wild type SBL = 1GCI)

AQSVPGISRVPVAPAHNRGLTGKSIGKLVAVLDTGIHSTHPDNSIRGGASFVPGE
STQDGNGHGTHVAGTIAALNNNSIGVLGVAAPSAELYAVKVLGASGSGSVSSIAQ
GLEWAGNNGMHVANLSLGSPSATLQAVAQVSATRGSVLVVAAASGNCAGSIS
YPARYANAMAVGATDQNNRASFSQYGAAGDLIVAPGVNVQSTYPGSTYASLN
GTSMATPHVAGAAALVKQKNPSWSNQIRNLKNTATLSGLTNYGSGLVNA
EAATR

Calculated average isotopic mass = 26714.5

Conversion of SBL-S156C to SBL-C156Dha

All manipulations were carried out in a cold room maintained at 4 ºC. A 1 mg sample of lyophilized SBL-S156C (0.037 μmol) was dissolved in 1.0 mL in 50 mM sodium phosphate buffer (pH 8.0). A solution of O-mesitylsulfonylhydroxylamine12 (MSH) was prepared by dissolving 1.8 mg (8.36 μmol) in 100 μL DMF. A 50 μL portion of the MSH solution was added to the protein by micropipette. The reaction was vortexed periodically over 1 minute and then rotated on a lab rotisserie for an additional 19 minutes at 4 ºC. A 50 μL aliquot was analyzed by LC–MS to confirm the conversion of Cys156 to Dha156 (26681 calculated, 26681 found). Small molecules were removed from the reaction mixture by loading the sample onto a PD10 desalting column (GE Healthcare) previously equilibrated with 10 column volumes of pH 8.0 sodium phosphate buffer (50 mM) and eluting with 3.50 mL of the same buffer. The collected sample (now diluted to 0.29 mg/mL) was split into 300 μL aliquots, flash frozen with liquid nitrogen, and stored at -80 ºC.
Preparation of SBL-C156SGlcNAc (15a)

All manipulations were carried out in a cold room maintained at 4 °C. A 250 μL aliquot of SBL-C156Dha (0.29 mg/mL, 2.72 nmol) previously prepared was thawed. To the protein solution was added 2-acetamido-2-deoxy-1-thio-β-D-glucopyranose as a solid (8.8 mg, 1000 equiv.) to give a 39 mM solution in thiol. After 90 minutes of shaking at 4 °C, the reaction was analyzed directly by LC–MS. Complete conversion to SBL-C156SGlcNAc 15a was observed (calculated mass, 26918; observed mass, 26918). The reaction mixture was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) and stored at -20 °C.
Preparation of SBL-C156SGlc (16a)

All manipulations were carried out in a cold room maintained at 4 °C. A 250 μL aliquot of SBL-C156Dha (0.29 mg/mL, 2.72 nmol) previously prepared was thawed. To the protein solution was added 1-thio-β-D-glucopyranose as a solid (5.3 mg, 0.027 mmol) and the resulting mixture vortexed for 1 minute. After 50 minutes of shaking, the reaction was analyzed directly by LC–MS and complete conversion to SBL-C156SGlc 16a was observed (calculated mass, 26877; observed mass, 26878). The reaction mixture was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) and stored at -20 °C.

Preparation of SBL-C156SGal (17a)

All manipulations were carried out in a cold room maintained at 4 °C. A 235 μL aliquot of SBL-C156Dha (0.29 mg/mL, 2.55 nmol) previously prepared was thawed. To the protein solution was added 1-thio-β-D-galactopyranose sodium salt as a solid (6 mg, 0.027 mmol) and the resulting mixture vortexed for 30 seconds. After 100 minutes of shaking, the reaction was analyzed directly by LC–MS and complete conversion to SBL-C156SGal 17a was observed (calculated mass, 26877; observed mass, 26880).
After 2 h, the protein solution was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) and stored at –20 ºC.

Preparation of SBL-C156-SGlc2F (18a)

All manipulations were carried out in a cold room maintained at 4 ºC. A 300 μL aliquot of SBL-C156Dha (0.4 mg/mL, 4.49 mmol) previously prepared was thawed. To the protein solution was added 2-deoxy-2-fluoro-1-thio-β-D-glucopyranose as a solid (3.2 mg, 0.016 mmol) and the resulting mixture vortexed for 30 seconds. After 3h of shaking, the reaction was analyzed directly by LC–MS and complete conversion to SBL-C156SGlc2F 18a was observed (calculated mass, 26879; observed mass, 26884). The protein solution was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) and stored at –20 ºC.
Preparation of SBL-C156-SMan2F (19a)

All manipulations were carried out in a cold room maintained at 4 °C. A 300 μL aliquot of SBL-C156Dha (0.4 mg/mL, 4.49 nmol) previously prepared was thawed. To the protein solution was added 2-deoxy-2-fluoro-1-thio-β-D-mannopyranose as a solid (3.7 mg, 0.018 mmol) and the resulting mixture vortexed for 30 seconds. After 2h of shaking, the reaction was analyzed directly by LC–MS and complete conversion to SBL-C156SGlc2F 19a was observed (calculated mass, 26879; observed mass, 26884). The protein solution was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) and stored at –20 °C.

Preparation of SBL-C156-SSeGlcNAc (20a)

To a solution of SBL-S156C (1 mL of 1 mg/mL, 0.037 μmol) in 50 mM sodium phosphate buffer (pH 8.0), bis(2-acetamido-2-deoxy-β-D-glucopyranosyl)-1,1'-diselenide (2.1 mg, 3.708 μmol) was added as a solid and the resulting mixture vortexed for 30 seconds. After 135 minutes of additional shaking at 22 °C, the reaction was analyzed directly by LC-MS and complete conversion to SBL-C156SSeGlcNAc 20a.
was observed (calculated mass, 26998; observed mass, 26996). The protein solution was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) and stored at –20 ºC.

![Figure S32. ESI-MS spectrum of SBL-C156-SSeGlcNAc 20a.](image)

Preparation of SBL-C156-SSeGlc (21a)

All manipulations were carried out in a cold room maintained at 4 ºC. To a solution of SBL-S156C (1 mL of 1 mg/mL, 0.037 μmol) in 50 mM sodium phosphate buffer (pH 8.0), bis(β-D-glucopyranosyl)-1,1'-diselenide (1.9 mg, 3.923 μmol) was added as a solid and the resulting mixture vortexed for 30 seconds. After 1 h of additional shaking, the reaction was analyzed directly by LC-MS and complete conversion to SBL-C156-SSeGlc 21a was observed (calculated mass, 26956; observed mass, 26955). The protein solution was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) and stored at –20 ºC.

![Supplementary Material (ESI) for Chemical Science](image)
Preparation of SBL-C156-SSeGlc2F (22a)

All manipulations were carried out in a cold room maintained at 4 °C. To a solution of SBL-S156C (250 μL of 1 mg/mL, 9.35 nmol) in 50 mM sodium phosphate buffer (pH 8.0), bis(2-deoxy-2-fluoro-β-D-glucopyranosyl)-1,1′-diselenide (0.45 mg, 0.922 μmol) was added as a solid and the resulting mixture vortexed for 1 min. After 2 h of additional shaking, a 40 μL aliquot was analyzed directly by LC-MS and complete conversion to SBL-C156-SSeGlc2F 22a was observed (calculated mass, 26958; observed mass, 26960). The protein solution was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) and stored at –20 °C.

Figure S34. ESI-MS spectrum of SBL-C156-SSe-Glc2F 22a.
Preparation of SBL-C156-SSeMan2F (23a)

All manipulations were carried out in a cold room maintained at 4 °C. To a solution of SBL-S156C (500 μL of 1 mg/mL, 0.018 μmol) in 50 mM sodium phosphate buffer (pH 8.0), bis(2-deoxy-2-fluoro-β-D-mannopyranosyl)-1,1’-diselenide (0.9 mg, 1.858 μmol) was added as a solid and the resulting mixture vortexed for 30 seconds. After 2 h of additional shaking, a 25 μL aliquot was analyzed directly by LC-MS and complete conversion to SBL-C156-SSeMan2F 23a was observed (calculated mass, 26958; observed mass, 26959). The protein solution was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) and stored at –20 ºC.

Preparation of SBL-C156-SSGlcNAc (24a)

SBL-S156C (3.0 mg, 0.11 μmol) was added to a 1.5 mL plastic tube as a lyophilized solid and dissolved in 1.0 mL buffer comprised of 70 mM CHES, 5.0 mM MES, and 2.0 mM CaCl₂ (pH 9.5). 1-Thio-2-acetamido-2-deoxy-β-D-glucopyranose (2.7 mg, 11 μmol) was added as a solid to the protein solution along with 200 μL acetonitrile. The reaction
was vortexed to homogenize and rotated on a lab rotisserie for 1 h. LC–MS analysis of a 50 μL aliquot of the reaction mixture revealed complete conversion to the corresponding disulfide (SBL-SS-GlcNAc) 24a (calculated mass, 26949; observed mass 26953). The reaction mixture was dialyzed against 50 mM sodium phosphate buffer (pH 7.0) for 4 h and stored at –20 °C.

Figure S36. ESI–MS spectrum of SBL-C156-SS-GlcNAc 24a.
2.6. Enzymatic extension of glycoproteins 15-24a

Endo A-catalyzed glycosylation of SBL-C156-SGlcNAc (15a)

To a solution of SBL-C156-SGlcNAc 15a (140 μL of 1 mg/mL, 5.20 nmol) in 50 mM sodium phosphate buffer (pH 7.0), disaccharide oxazoline 1 (420 μg, 1.149 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 °C. The reaction was analyzed directly by LC–MS. Reaction conditions were reproduced in a similar sample without Endo-A as control reaction.

After 2h incubation:

After 4 h incubation:

After 6 h incubation:

Figure S37. ESI–MS spectra after 2, 4 and 6 h incubation of 15a with Endo A.
Figure S38. ESI–MS spectrum of control reaction without Endo A after 6 h incubation.

Endo A-catalyzed glycosylation of SBL-C156SGlc 16a

An aliquot of SBL-C156SGlc 16a (140 μL of 0.29 mg/mL, 1.51 nmol) in 50 mM sodium phosphate buffer (pH 7.0) previously prepared was thawed. To the protein solution, disaccharide oxazoline 1 (350 μg, 0.958 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 ºC. The reaction was analyzed directly by LC–MS.

After 2h incubation:

After 4 h incubation:
After 6 h incubation:

Figure S39. ESI–MS spectra after 2, 4, 6 and 12 h incubation of 16a (0.29 mg/mL) with Endo A.

Endo A-catalyzed glycosylation of SBL-C156SGal 17a

To a solution of SBL-C156Gal 17a (150 μL of 0.29 mg/mL, 1.618 nmol) in sodium phosphate buffer (50 mM solution, pH 7.0), disaccharide oxazoline 1 (280 μg, 0.766 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 ºC. The reaction was analyzed directly by LC–MS.

After 2h incubation:
After 4h incubation:

Figure S40. ESI–MS spectra after 2, 4 and 6 h incubation of 17a (0.29 mg/mL) with Endo A.

Endo A-catalyzed glycosylation of SBL-C156-SGlc2F 18a (0.29 mg/mL)

To a solution of SBL-C156-SGlc2F 18a (145 μL of 0.4 mg/mL, 2.16 nmol) in 50 mM sodium phosphate buffer (pH 7.0), disaccharide oxazoline 1 (55 μL of 4.69 mg/mL, 0.707 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 °C. The reaction was analyzed directly by LC–MS.

After 1h incubation:
After 2h incubation:

After 4h incubation:

After 6h incubation:

After 8h incubation:

After 11h incubation:

After 24h incubation:

Figure S41. ESI–MS spectra after 1, 2, 4, 6, 8, 11 and 24 h incubation of 18a (0.29 mg/mL) with Endo A.
Endo A-catalyzed glycosylation of SBL-C156-SMan2F 19a (0.29 mg/mL)

To a solution of SBL-C156-SGlc2F 19a (145 μL of 0.4 mg/mL, 2.16 nmol) in 50 mM sodium phosphate buffer (pH 7.0), disaccharide oxazoline 1 (55 μL of 4.69 mg/mL, 0.707 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 ºC. The reaction was analyzed directly by LC–MS.

After 1h incubation:

After 2h incubation:

After 4h incubation:

After 6h incubation:

After 8h incubation:
After 24h incubation:

Figure S42. ESI–MS spectra after 1, 2, 4, 6, 8 and 24 h incubation of 19a (0.29 mg/mL) with Endo A.

Endo A-catalyzed glycosylation of SBL-C156-SSeGlcNAc 20a (1 mg/mL)

To a solution of SBL-C156-SSeGlcNAc 20a (150 μL of 1 mg/mL, 5.55 nmol) in sodium phosphate buffer (50 mM solution, pH 7.0), disaccharide oxazoline 1 (550 μg, 1.505 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 ºC. The reaction was analyzed directly by LC–MS.

After 1h incubation:

After 2h incubation:
After 4h incubation:

After 6h incubation:

After 10h incubation:

Figure S43. ESI–MS spectra after 1, 2, 4, 6 and 10 h incubation of 20a (1 mg/mL) with Endo A.

Endo A-catalyzed glycosylation of SBL-C156-SSeGlcNAc 20a (0.29 mg/mL)

To a solution of SBL-C156-SSeGlcNAc 20a (200 mL of 0.29 mg/mL, 2.14 nmol) in sodium phosphate buffer (50 mM solution, pH 7.0), disaccharide oxazoline 1 (252 mg, 0.691 mmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 °C. The reaction was analyzed directly by LC–MS.
After 2h incubation:

After 4h incubation:

After 6h incubation:

After 10h incubation:

Figure S44. ESI–MS spectra after 2, 4, 6 and 10 h incubation of 20a (0.29 mg/mL) with Endo A.
Endo A-catalyzed glycosylation of SBL-C156-SSeGlc 21a (1 mg/mL)

To a solution of SBL-C156-SSeGlc 21a (150 mL of 1 mg/mL, 5.56 nmol) in sodium phosphate buffer (50 mM solution, pH 7.0), disaccharide oxazoline 1 (490 mg, 1.341 mmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 °C. The reaction was analyzed directly by LC–MS.

After 1h incubation:

After 2h incubation:

After 4h incubation:
After 6h incubation:

After 10h incubation:

Figure S45. ESI–MS spectra after 1, 2, 4, 6 and 10 h incubation of 21a (1 mg/mL) with Endo A.

Endo A-catalyzed glycosylation of SBL-C156-SSeGlc 21a (0.29 mg/mL)

To a solution of SBL-C156-SSeGlc 21a (200 μL of 0.29 mg/mL, 2.15 nmol) in 50 mM sodium phosphate buffer (pH 7.0), disaccharide oxazoline 1 (252 μg, 0.691 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 °C. The reaction was analyzed directly by LC–MS.

After 2h incubation:
After 4h incubation:

After 6h incubation:

After 10h incubation:

Figure S46. ESI–MS spectrum after 2, 4, 6 and 10 h incubation of 21a (0.29 mg/mL) with Endo A.

Endo A-catalyzed glycosylation of SBL-C156-SSeGlc2F 22a (0.5 mg/mL)

To a solution of SBL-C156-SSeGlc2F 22a (200 μL of 0.5 mg/mL, 3.709 nmol) in sodium phosphate buffer (50 mM solution, pH 7.0), disaccharide oxazoline 1 (370 μg, 1.012 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 °C. The reaction was analyzed directly by LC–MS.
After 2h incubation:

After 4h incubation:

After 6h incubation:

After 8h incubation:
After 10h incubation:

Figure S47. ESI–MS spectra after 2, 4, 6, 8 and 10 h incubation of 22a (0.5 mg/mL) with Endo A.

Endo A-catalyzed glycosylation of SBL-C156-SSeMan2F 23a (1 mg/mL)

To a solution of SBL-C156-SSeMan2F 23a (150 μL of 1 mg/mL, 5.56 nmol) in 50 mM sodium phosphate buffer (pH 7.0), disaccharide oxazoline 1 (510 μg, 1.395 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 °C. The reaction was analyzed directly by LC–MS.

After 1h incubation:

After 2h incubation:
After 3h incubation:

After 4h incubation:

After 6h incubation:

After 10h incubation:

Figure S48. ESI–MS spectrum after 1, 2, 3, 4, 6 and 10 h incubation of 23a (1 mg/mL) with Endo A.

Endo A-catalyzed glycosylation of SBL-C156-SSeMan2F 23a (0.43 mg/mL)

To a solution of SBL-C156-SSeMan2F 23a (200 μL of 0.43 mg/mL, 3.22 nmol) in 50 mM sodium phosphate buffer (pH 7.0), disaccharide oxazoline 1 (390 μg, 1.067 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 ºC. The reaction was analyzed directly by LC–MS.
Figure S49. ESI–MS spectrum after 2, 4, 6 and 10 h incubation of 23a (0.43 mg/mL) with Endo A.
Endo A-catalyzed glycosylation of SBL-C156-SSeMan2F 23a (0.29 mg/mL)

To a solution of SBL-C156-SSeMan2F 23a (200 μL of 0.29 mg/mL, 2.15 nmol) in 50 mM sodium phosphate buffer (pH 7.0), disaccharide oxazoline 1 (252 μg, 0.691 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 °C. The reaction was analyzed directly by LC–MS.

After 1h incubation:

After 2h incubation:

After 4h incubation:

After 6h incubation:
After 10h incubation:

Figure S50. ESI–MS spectrum after 1, 2, 4, 6 and 10 h incubation of 23a (0.29 mg/mL) with Endo A.

Endo A-catalyzed glycosylation of SBL-C156-SSGlcNAc 24a (1 mg/mL)

To a solution of SBL-C156-SSGlcNAc 24a (200 μL of 1 mg/mL, 7.42 nmol) in 50 mM sodium phosphate buffer (pH 7.0), disaccharide oxazoline 1 (530 μg, 1.45 μmol) and Endo A (11 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 °C. The reaction was analyzed directly by LC–MS.

After 1h incubation:

After 2h incubation:
After 4h incubation:

After 6h incubation:

After 8h incubation:

Figure S51. ESI–MS spectra after 1, 2, 4, 6 and 8 h incubation of 24a (1 mg/mL) with Endo A.
2.7 Data for comparison of triazole vs. thioether on Np276

2.7.1 Synthesis of Azidohomoalanine (Aha)

\[
\begin{align*}
\text{BocHN} & \quad \text{CO}_2\text{H} \\
\text{Ph\{OAc\}_2} & \quad \text{THF/H}_2\text{O}, \text{4ºC} \\
\text{BocHN} & \quad \text{NH}_2 \\
\text{CO}_2\text{H}
\end{align*}
\]

52%

\[\text{N-Boc-glutamine (11.49 g, 46.66 mmol) was added to a 500 mL round bottom flask and dissolved in a mixture of THF (100 mL) and H}_2\text{O (25 mL). The solution was stirred at 4 ºC (cold room) and Ph\{OAc\}_2 (18.03 g, 55.99 mmol) was added in several portions to give a cloudy suspension. The reaction was stirred vigorously at 4 ºC for 6 hours after which the reaction was judged to be complete by TLC (4:1:1 iPrOH:H}_2\text{O:AcOH). The solvent was removed to give a white residue that was then dissolved in H}_2\text{O (60 mL) and washed with EtOAc (3 × 60 mL). The organic fractions were discarded. The aqueous layer was concentrated under reduced pressure to give a white/yellow solid. The solid was triturated with cold Et}_2\text{O (100 mL), isolated by filtration, and dried under vacuum to give 5.26 g (52%) of the Hoffman-rearrangement product as a white solid. m.p.= 200-201 ºC. (Lit}^{18}: 190-191 ºC). [\alpha]_D^{20} = -8.1 (c = 1.0, H}_2\text{O) (Lit}^{18}: [\alpha]_D^{20} = -9.6, c = 1.0, H}_2\text{O). IR (\nu}_{\text{max}}, \text{KBr):} 3490, 2973, 2217, 1697, 1392, 1319, 1256, 1182, 1054, 1019. ^1\text{H NMR (400 MHz, D}_2\text{O):} \delta = 1.28 (9H, s, Boc), 1.76-1.85 (1H, m, \text{CH}_2\text{CH}_2\text{NH}_2), 1.94-2.03 (1H, m, \text{CH}_2\text{CH}_2\text{NH}_2), 2.91 (2H, t, J = 7.8, \text{CH}_2\text{NH}_2), 3.82 (1H, dd, J = 8.0, 5.2, H_\alpha). ^13\text{C NMR (100 MHz, D}_2\text{O):} \delta = 28.0 (\text{Boc}), 30.1 (\text{CH}_2\text{CH}_2\text{NH}_2), 37.1 (\text{CH}_2\text{NH}_2), 53.9 (C_\alpha), 81.6 (\text{Boc}), 157.9, 178.3 (2 × C=O). LRMS m/z (ESI+): 219.2 [M+H]}.^+
\]

Preparation of TfN\textsubscript{3}19

\[
\begin{align*}
\text{BocHN} & \quad \text{CO}_2\text{H} \\
\text{TfN}_3, \text{CuSO}_4 & \quad \text{H}_2\text{O/MeOH} \\
\text{BocHN} & \quad \text{CO}_2\text{H}
\end{align*}
\]

89%

\[\text{Sodium azide (14.89 g, 229 mmol) was dissolved in H}_2\text{O (25mL) and CH}_2\text{Cl}_2 (50 mL) was added to the reaction flask. Triflic anhydride (10.0 g, 35.44 mmol) was added dropwise to the stirred solution at 0 ºC and the biphasic mixture stirred vigorously from 0 ºC to room temperature over two hours. After this time, the organic layer was separated and the aqueous layer extracted with CH}_2\text{Cl}_2 (2 × 60 mL). The combined organics were washed with sat. NaHCO}_3 (100 mL). The solution of TfN}_3 in CH}_2\text{Cl}_2 was used immediately in the next step.}\]
Diazotransfer:

The primary amine derived from the Hoffman rearrangement of BocGlnOH (3.87 g, 17.73 mmol) and CuSO₄ (44 mg, 0.17 mmol) were dissolved in H₂O (60 mL). To this solution was added MeOH (90 mL) and K₂CO₃ (3.67 g, 26.60 mmol). The resulting blue/green solution was stirred vigorously at room temperature while the TfN₃ solution prepared above was poured into the reaction mixture. The cloudy solution was stirred at room temperature overnight. TLC (4:1:1 iPrOH:H₂O:AcOH, ninhydrin) indicated complete consumption of the starting material. The organic solvent was removed under reduced pressure and the remaining aqueous solution was washed with CH₂Cl₂ (2 × 50 mL). The organic layer was discarded and the aqueous layer was acidified carefully to pH 2 (pH paper) with 10M HCl. The aqueous solution was extracted with EtOAc (4 × 80 mL) and the combined organics were washed with brine (200 mL). The solution was dried (MgSO₄), filtered, and the solvent removed under reduced pressure to give Boc-azidohomoalanine (BocAhaOH) as a clear oil (3.85 g, 89% yield). This material was used in the next step without purification. [α]²⁰°D = +19.0 (c = 1.0, CHCl₃). IR (υmax, film): 2982, 2106, 1695, 1517, 1396, 1157, 1060. ¹H NMR (400 MHz, MeOD): δ = 1.44 (9H, s, Boc), 1.82-1.91 (1H, m, CHHCH₂N₃), 2.04-2.10 (1H, m, CHHCH₂N₃), 3.35-3.48 (2H, m, CH₂N₃), 4.22 (1H, dd, J₁ = 9.4, 4.6, H₃). ¹³C NMR (50 MHz, MeOD): δ = 28.8 (Boc), 32.0 (CH₂CH₂N₃), 49.2 (CH₂N₃), 52.4 (Cα), 80.8 (Boc), 158.1, 175.6 (2 × C=O). HRMS m/z (ESI+): Found 267.1066 (M+Na⁺); C₉H₁₆N₄O₄Na requires 267.1064.

![Reaction Scheme](attachment:image.png)

To a solution of BocAhaOH (5.72 g, 23.42 mmol) in CH₂Cl₂ (15 mL) at 0 °C was added TFA (4.0 mL). The solution was stirred from 0 °C to room temperature over an hour. An additional 5.0 mL of TFA was then added and the solution stirred for 4 hours at room temperature. TLC analysis indicated complete consumption of the starting material. The solvent was removed under reduced pressure to give a thick yellow oil. This oil was dissolved in 5.0 mL of H₂O, cooled to 0 °C, and the resulting solution adjusted to pH ~10 with 2.5M NaOH (pH paper). Dowex-50WX8 was prewashed with MeOH, acetone, 2M HCl, and then H₂O until the filtrate was neutral. This conditioned
resin was then added to the solution until the pH of the reaction mixture was approximately neutral (pH paper). The neutralized solution was poured onto a column of DOWEX-50WX8 (100 g conditioned resin). The resin was washed with H₂O (500 mL) to remove TFA salts and then the product eluted with 5% NH₄OH (aq). The fractions containing azidohomoalanine (ammonium carboxylate) were combined and evaporated under reduced pressure at 50 ºC to give the azidohoalanine as the free amino acid. This white solid was recrystallized by suspending in ~20 mL of boiling EtOH and then adding distilled H₂O dropwise until the solution was clear. Once the solution was clear, an additional 10 mL of EtOH was added. Upon slow cooling (over 6 hours to rt), azidohomoalanine crystallized as small white cubes. The crystals were isolated by filtration and dried under vacuum (2.12 g, 67% yield). m.p.= 231-232 ºC. [α]_D20 = +6.60 (c = 0.50, H₂O). IR (KBr): 2954, 2112, 1587, 1507, 1446, 1415, 1359, 1322, 1196, 1160, 1091. ¹H NMR (400 MHz, D₂O): δ = 1.99 (2H, m, CH₂CH₂N₃), 3.44 (2H, app dt, J = 6.6, 2.3, CH₂N₃), 3.69 (1H, dd, J = 5.6, 7.2, Hα). ¹³C NMR (100 MHz, D₂O): δ = 29.9 (C₃H₂CH₂N₃), 47.9 (C₃H₂N₃), 53.2 (Cα), 174.2 (C=O). HRMS m/z (ESI+): Found 167.0539 (M+Na)$^+$; C₅H₈N₄O₂Na requires 167.0545. Anal. calc. for C₅H₈N₄O₂: C, 33.33; H, 5.59; N, 38.87; found C, 33.37; H, 5.59; N, 38.85.

2.7.1 (rac)-Hpg synthesis

\[\text{OH} \xrightarrow{\text{Swern Oxidation}} \text{CO} \quad \text{59%} \]

This procedure was adapted from the literature.20 CH₂Cl₂ (200 mL, anhydrous) was added to a flame-dried 500 mL round bottom flask under a stream of nitrogen. Oxalyl chloride (10.3 mL, 118 mmol) was added and the stirred solution was cooled to -78 ºC. A solution of DMSO (16.8 mL) in CH₂Cl₂ (30 mL) was added dropwise to the reaction at -78 ºC under a stream of nitrogen over a period of 15 minutes. After 30 minutes, 4-pentyn-1-ol (10.0 mL, 108 mmol) was added over a period of 5 minutes. The reaction was stirred for 1 hour at -78 ºC before Et₃N (75.0 mL, 538 mmol) was added over a period of 15 minutes. The reaction was stirred vigorously to accommodate the formation of triethylamine hydrochloride and was warmed to 0 ºC over a period of 1 hour. After this time, the reaction was stirred at 0 ºC for two additional hours. The reaction was then quenched at 0 ºC by the addition of 1M HCl (100 mL). The mixture was then transferred to a separatory funnel and diluted with an additional 200 mL of 1M HCl. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂.
(2 × 100 mL). The combined organic layers were dried (MgSO\(_4\)), filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography (50% CH\(_2\)Cl\(_2\) in 30-40 petrol) to afford the aldehyde as a thin, yellow oil (5.23 g, 59%). Note that the aldehyde is volatile and care must be taken when concentrating under reduced pressure. Spectroscopic data was consistent with that previously reported.\(^{20}\) IR (\(\nu_{\text{max}}, \text{film}\)): 3291, 2922, 2835, 2735, 2360 2341, 2120, 1724, 1059. \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta = 1.95\) (1H, t, \(J = 2.7, \text{C=CH}\)), 2.45 (2H, td, \(J = 7.1, 2.7, \text{HC≡CCH}_2\)), 2.64 (2H, t, \(J = 7.1, \text{CH}_2\text{CHO}\)), 9.74 (1H, app. s., \text{CHO}). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta = 11.4\) (HC≡CCH\(_2\)), 42.1 (CH\(_2\text{CHO}\)), 69.1 (HC≡C), 82.2 (HC≡C), 200.0 (C=O).

\[
\text{NaCN, NH}_4\text{Cl, NH}_4\text{OH} \quad \xrightarrow{\text{H}_2\text{O, MeOH}} \quad \text{CN} \quad \text{NH}_2
\]

Caution: NaCN is extremely toxic. All manipulations must be carried out in a fume hood and aqueous waste should be kept basic and disposed of safely.

This synthesis was adapted from the literature.\(^{21}\) NH\(_4\)Cl (1.41 g, 26.4 mmol) and NaCN (1.28 g, 26.1 mmol) were added as solids to a 100 mL round bottom flask and dissolved in 16 mL of 12.5% NH\(_4\)OH (aq.). The solution was stirred at room temperature for 1 hour before 4-pentynal (1.25 g, 15.2 mmol) was added as a solution in 6 mL MeOH. The reaction was heated to 40 ºC and stirred for 4 hours. After this time, the reaction was cooled to room temperature and then extracted with CH\(_2\)Cl\(_2\) (3 × 50 mL). The combined organic layers were dried (MgSO\(_4\)), filtered, and concentrated under reduced pressure. The product amino nitrile (1.28 g, 78%, yellow oil) was sufficiently pure to carry on to the next step and was not purified further. IR (\(\nu_{\text{max}}, \text{film}\)): 2937, 2867, 2360, 2341, 2230, 2117, 1606, 1446, 1433, 1313, 1116, 1042. \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta = 1.64\) (2H, br. s., NH\(_2\)), 1.91-2.02 (2H, m, H\(\beta\)), 2.04 (1H, t, \(J = 2.6, \text{C≡CH}\)), 2.38-2.55 (2H, m, H\(\gamma\)), 3.90 (1H, quin., \(J = 7.6, \text{Hc}\)). \(^{13}\)C NMR (CDCl\(_3\), 50 MHz): \(\delta = 14.6, 33.5\) (CH\(_2\text{CH}_2\text{C≡CH}\)), 41.8 (C\(\alpha\)), 69.9 (C≡CH), 81.7 (C≡CH), 121.6 (C≡N). LRMS m/z (ESI\(^+\)): 109.1 [M+H\(^+\)].
This synthesis was adapted from the literature.21 The crude amino nitrile prepared above (1.19 g, 11.0 mmol) was dissolved in 1,4-dioxane (4 mL) in a 50 mL round bottom flask. An ice cold solution of 10\% H\textsubscript{2}SO\textsubscript{4} (aq.) was added to the stirred solution. The reaction was then heated to reflux (bath temp = 120 °C) and stirred for 24 hours. The resulting solution (now very dark in color) was cooled to room temperature and then poured onto a column of DOWEX-50WX8 (100 g, H+ form). The column was washed with water (500 mL) and the flow through was discarded. The product was then eluted with 500 mL of 5\% NH\textsubscript{4}OH (aq.). The product was collected and the solvent was removed under reduced pressure (bath temp = 65 °C). The resulting off-white solid was recrystallized (EtOH / H\textsubscript{2}O) to give racemic Hpg as small off-white needles (451 mg, 32\%). m.p. = 230 °C (decomposes to red solid). IR (\nu\textsubscript{max}, KBr): 3425, 3295, 3037, 2590, 2117, 1608, 1453, 1411, 1360, 1280. 1H NMR (D\textsubscript{2}O, 500 MHz): \delta = 1.91-2.10 (2H, m, H\textalpha{}), 2.26-2.37 (3H, m, CH\textsubscript{2}C\equivCH), 3.77 (1H, dd, \textit{J} = 7.6, 5.4, H\textbeta{}). 13C NMR (D\textsubscript{2}O, 125 MHz): \delta = 14.4 (CH\textsubscript{2}C\equivCH), 29.2 (C\textbeta{}), 53.9 (C\textalpha{}), 70.8 (C\equivCH), 83.0 (C\equivCH), 174.2 (C=O). LRMS m/z (ESI+): 128.1 [M+H]+.
2.7.3 Expression of Np276 Aha61, Np276 Hpg61, Np276 Cys61, Np276 Aha101

Expression of Np276 Aha61

A glycerol stock of *E. coli* B834(DE3) cells containing the pET28d plasmid carrying the gene for Np276 (M21I) was used to inoculate a small starter culture of LB media (25 ml) containing kanamycin (50 μg/ml). This starter culture was grown overnight at 37 °C and then used to inoculate SelenoMet media (1L) containing kanamycin (50 μg/ml) and filter-sterilised L-Methionine (40 μg/ml). The cells were incubated at 37 °C and grown to an optical density value between 0.6 and 0.8 before being harvested by centrifugation (10 mins, 8000 rpm, 4 °C). The cells were washed thrice by re-suspending in SelenoMet media containing kanamycin (50 μg/ml) but absent of either L-Methionine or azidohomoalanine. The cells were then transferred to pre-warmed SelenoMet media (1L) containing kanamycin (50 μg/ml) and supplemented with filter-sterilised azidohomoalanine (100 μg/ml). The culture was incubated for 30 mins at 37 °C followed by 30 mins at 30 °C. Expression was induced with IPTG (0.24 g, 1 mmol) and incubation continued overnight at 20 °C (220 rpm).

The cells were then harvested by centrifugation (10 mins, 8000 rpm, 4°C) and the pellets collected and incubated on ice for 1 hour with stirring following the addition of DNase (10 mg) and lysozyme (10 mg). The cells were then sonicated (20% power, 5 bursts of 30 seconds with 1 minute waiting times between bursts) and the resulting cell debris pelleted by centrifugation (30 minutes, 20,000 rpm, 4 °C). Purification of the protein was achieved by incubating the cell lysate overnight with HisBind resin (10 ml) at 4 °C. The resin was then washed with 150 ml of binding buffer (20 mmol Tris-HCl, 15 mmol imidazole, 0.3 M NaCl, pH 7.8) and finally eluted with 60 ml of elution buffer (20 mmol Tris-HCl, 500 mmol imidazole, 0.3 M NaCl, pH 7.8). All fractions were analysed by SDS-PAGE (4-12% Bis-Tris gel, MES buffer).

The fractions containing protein were combined and dialysed twice into 4 L of phosphate buffer (50 mmol Na₂HPO₄, pH 8) to remove the imidazole. The resulting protein, now in phosphate buffer was analysed by LC-MS and stored at -20 °C.
Sequence of NP276 M61Aha

GSSHHHHHHSSGLVPRGSHIDVGKLRQLYAAGERDFSIVDLRGAVLENI
NLSGAILHGA**Aha**DEANLQQANLSRADLSGATLNGADLRGANLSKADLSDA
ILDNAILEGAILDEAVLNQANLKANLEQAILSHANIREADLSGEADLSG
ADLAIADLHQANLHQAAALERANLTGANLEDANTILEGGNINLAT

Calculated average isotopic mass = 20832 (N-terminal Met cleaved)

Expression of NP276 Hpg61

A glycerol stock of *E. coli* B834(DE3) cells containing the pET28d plasmid carrying the gene for NP276 (M21I) was used to inoculate a small starter culture of LB media (25 ml) containing kanamycin (50 μg/ml). This starter culture was grown overnight at 37 °C and then used to inoculate SelenoMet media (1L) containing kanamycin (50 μg/ml) and filter-sterilised L-Methionine (20 μg/ml). The cells were incubated at 37 °C and grown to an optical density value between 0.6 and 0.8 before being harvested by centrifugation (10 mins, 8000 rpm, 4 °C). The cells were washed five times by re-suspending in SelenoMet media containing kanamycin (50 μg/ml) but absent of either L-Methionine or azidohomoalanine. The cells were then transferred to pre-warmed SelenoMet media (1L) containing kanamycin (50 μg/ml) and supplemented with filter-sterilised homopropargylglycine (250 μg/ml). The culture was incubated for two hours at 37 °C followed by 30 mins at 30 °C. Expression was induced with IPTG (0.24 g, 1 mmol) and incubation continued overnight at 20 °C (220 rpm).

The cells were then harvested by centrifugation (10 mins, 8000 rpm, 4 °C) and the pellets collected and incubated on ice for 1 hour with stirring following the addition of DNase (10 mg) and lysozyme (10 mg). The cells were then sonicated (20% power, 5 bursts of 30 seconds with 1 minute waiting times between bursts) and the resulting cell
Supporting Information

debris pelleted by centrifugation (30 minutes, 20,000 rpm, 4 °C). Purification of the protein was achieved by incubating the cell lysate overnight with HisBind resin (10 ml) at 4 °C. The resin was washed with 150 ml of binding buffer (20 mmol Tris-HCl, 15 mmol imidazole, 0.3 M NaCl, pH 7.8) and finally eluted with 60 ml of elution buffer (20 mmol Tris-HCl, 500 mmol imidazole, 0.3 M NaCl, pH 7.8). All fractions were analysed by SDS-PAGE (4-12% Bis-Tris gel, MES buffer).

Np276-Hpg61 eluted fractions

The fractions containing protein were combined and dialysed twice into 4 L of phosphate buffer (50 mmol Na₂HPO₄, pH 8) to remove the imidazole. The resulting protein, now in phosphate buffer was analysed by LCT-MS and stored at -20 °C.

Sequence of Np276 M61Hpg

GSSHHHHHHSSGLVPRSHIDVGKLQLYAAGERDFSIV DLRGAVLENI NLSGAILHGA HpgLDEANLQQANLSRADLSGATLNGADLRGANLSKADLSDA ILDNAILEGAILDEAVLNQANLKAANLEQAILSHANIREADLSEANLEAALSG ADLAIADLHQANLHQAALERANLTGANLEDANLEGKNNLAT

Calculated average isotopic mass = 20816 (N-terminal Met cleaved)
Expression of Np276 Cys61

A pET28d plasmid carrying the gene for Np276 (M21I) was modified by site-directed mutagenesis in order to introduce the mutation \textit{M61C} into the protein's primary sequence using the following primers:

- \textbf{M61C (F)} – \texttt{[5'-CTACATGGGGCGTGCCTAGATGAAGC-3']}
- \textbf{M61C (R)} – \texttt{[5'–GCTTCATCTAGGCACGCCCCATGTAG-3']}

DNA sequencing confirmed the presence of both mutations (GeneService, Oxford):

Forward DNA sequence - T7F

\begin{verbatim}
ATG GGC AGC AGC CAT CAT
ATT GAC GTA GGA AAA CTC AGG CAA CTA TAT GCC GCA GGA GAG GCA GAC TTG
GAC TTG AGG GGT GCA GTC TTG GAA AAC ATC AAT CTC AGT GGT GCA ATT CTA CAT
GGG GCG AGT CTC AAT GGT GCA GAT TTA AGA GGG GCT AAT TTA AGC AAA GCC
GAT TTG AGT GAA GCA AAT TTA GAA GGT GCA ATT CTG GAA GCC GTT TTA AAT
CAG GCT AAT CTC AAA GCT GCT AAC TTG GAG CAG GCG ATT CTT GCA TTA GAG
GAT TTG AGT GAA GGT GCA GAT TTA GAA GCC GTT TTA AAT CAG GCT AAT CTC
AAA GCT GCA TTA GAG GGG ACT ATT TTA GAG GGC GGC AAC AAC AAT CTT
GCA ACC TAA
\end{verbatim}

1 \textmu L of the above mutant was transformed into \textit{E. coli} B834(DE3) methionine-auxotrophic cells. A glycerol stock of the same cells was used to inoculate a small starter culture of LB media (25 ml) containing kanamycin (50 \textmu g/ml). This starter culture was grown overnight at 37 °C and then used to inoculate LB media (1L) containing kanamycin (50 \textmu g/ml). The cells were incubated at 37 °C and grown to an optical density value between 0.6 and 0.8. Expression was induced with IPTG (0.24 g, 1 mmol) and incubation continued overnight at 20 °C (220 rpm). The cells were then harvested by centrifugation (10 mins, 8000 rpm, 4 °C) and the pellets collected and incubated on ice for 1 hour with stirring following the addition of DNase (10 mg) and lysozyme (10 mg). The cells were then sonicated (20% power, 5 bursts of 30 seconds with 1 minute waiting times between bursts) and the resulting cell
debris pelleted by centrifugation (30 minutes, 20,000 rpm, 4 °C). Purification of the protein was achieved by incubating the cell lysate overnight with HisBind resin (10 ml) at 4 °C. The resin was washed with 150 ml of binding buffer (20 mmol Tris-HCl, 15 mmol imidazole, 0.3 M NaCl, pH 7.8) and finally eluted with 60 ml of elution buffer (20 mmol Tris-HCl, 500 mmol imidazole, 0.3 M NaCl, pH 7.8). All fractions were analysed by SDS-PAGE (4-12% Bis-Tris gel, MES buffer).

Np276-Cys61 eluted fractions

The fractions containing protein were combined and dialysed twice into 4 L of phosphate buffer (50 mmol Na2HPO4, pH 8) to remove the imidazole. The resulting protein, now in phosphate buffer was analysed by LCT-MS and stored at -20 °C.

Sequence of Np276 Cys61

GSSHHHHHHSSGLVPRGSHIDVGKLRLQLYAAGERDFSIV DLRGAVLENI
NLSGAILHGACLDEANLQQANLSRADLSGATLNGADLRGANLSKADLSDA
ILDNAILEGAILDEAVLNNQANLKAANLEQAILSHANIREADLSEANLEADLSG
ADLAIADLHQANLHQAALERANLTGANLEDANLEGNGNNLAT

Calculated average isotopic mass = 20810 (N-terminal Met cleaved)
Expression of Np276 Aha101

A pET28d plasmid carrying the gene for Np276 (M21I) was modified by multi site-directed mutagenesis in order to introduce the mutations M61I and I101M into the proteins primary sequence using the following primers:

- M61I (F) – [5’-CATGGGGCGATTCTAGATGAAGC-3’]
- M61I (R) – [5’-GCTTCATCTAGAATCGCCCCATG-3’]
- I101M (F) – [5’-GAGTGATGCAATGCTTGACAATGC-3’]
- I101M (R) – [5’-GCATTGTCAAGCATTGCATCACTC-3’].

DNA sequencing confirmed the presence of both mutations (GeneService, Oxford):

Forward DNA sequence - T7F

ATG GGC AGC AGC CAT CAT CAT CAT CAT CAT CAC AGC AGC GGC CTG GTG CCG CGC GGC AGC CAT
ATT GAC GTA GGA AAA CTC AGGCAA CTA TAT GCC GCA GGA GAG CGA GAC TTT AGT ATC GTT
GAC TTG AGG GGT GCA GTC TTG GAA AAC ATC AAT CTC AGT GGT GCA ATT CTA CAT GGG GCG
ATT CTA GAT GAA GCA AAT TTGCAA CAG GCA AAT CTC AGT CGG GCT GAC TTA AGT GGG GCT
ACG CTC AAT GGT GCA GAT TTA AGA GGG GCT AAT TTA AGC AAA GCC GAT TTG AGT GAT GCA
ATG CTT GAC AAT GCA ATA TTA GAA GGT GCA ATT CTT GAT GAA GCC GTT TTA AAT CAG GCT
AAT CTC AAA GCT GCT AAC TTG GAG CAG CGG ATT CTT AGT CAC GCT AAC ATC CGT GAA GCT
GAT TTG AGT GAA GCT AAT TTG GAA GCA GAT TTG AGG GCA GAT TTG AGC GGG GCA GAT TTA AGC GTC
GAT TTG CAT CAG GCA AAT CTG CAC CAA GCT GCA TTA GAA AGA GCC AAT CTT ACA GGA GCT
AAT CTA GAA GAT GCC AAT TTA GAG GGG ACT ATT TTA GAG GCC GGC AAC AAC AAT CCT GCA
ACC TAA

1 μL of the above mutant was transformed into *E. coli* B834(DE3) methionine-auxotrophic cells. A glycerol stock of the same cells was used to inoculate a small starter culture of LB media (25 ml) containing kanamycin (50 μg/ml). This starter culture was grown overnight at 37 °C and then used to inoculate SelenoMet media (1L) containing kanamycin (50 μg/ml) and filter-sterilised L-Methionine (40 μg/ml). The cells were incubated at 37 °C and grown to an optical density value between 0.6 and 0.8 before being harvested by centrifugation (10 mins, 8000 rpm, 4°C). The cells were washed thrice by re-suspending in SelenoMet media containing kanamycin (50 μg/ml) but absent of either L-Methionine or azidohomoalanine. The cells were then transferred...
to pre-warmed SelenoMet media (1L) containing kanamycin (50 μg/ml) and supplemented with filter-sterilised azidohomoalanine (100 μg/ml). The culture was incubated for 30 mins at 37 °C followed by 30 mins at 30 °C. Expression was induced with IPTG (0.24 g, 1 mmol) and incubation continued overnight at 20 °C (220 rpm). The cells were then harvested by centrifugation (10 mins, 8000 rpm, 4°C) and the pellets collected and incubated on ice for 1 hour with stirring following the addition of DNase (10 mg) and lysozyme (10 mg). The cells were then sonicated (20% power, 5 bursts of 30 seconds with 1 minute waiting times between bursts) and the resulting cell debris pelleted by centrifugation (30 minutes, 20,000 rpm, 4 °C). Purification of the protein was achieved by incubating the cell lysate overnight with HisBind resin (10 ml) at 4 °C. The resin was washed with 150 ml of binding buffer (20 mmol Tris-HCl, 15 mmol imidazole, 0.3 M NaCl, pH 7.8) and finally eluted with 60 ml of elution buffer (20 mmol Tris-HCl, 500 mmol imidazole, 0.3 M NaCl, pH 7.8). All fractions were analysed by SDS-PAGE (4-12% Bis-Tris gel, MES buffer).

The fractions containing protein were combined and dialysed twice into 4 L of phosphate buffer (50 mmol Na2HPO4, pH 8) to remove the imidazole. The resulting protein, now in phosphate buffer was analysed by LCT-MS and stored at -20 °C.
Sequence of NP276 Aha101

GSSHHHHHHSSGLVPRGSHIDVGKLRQLYAAGERDFSIV DLRGAVLENI NLGAILHGAILDEANLQQANLnLSRADLSGATLNGADLRGANLSKADLSDA AhaLDNAILEGAILDEAVLNQANLKAANLEQAILSHANIREADLSEANLEAADLS GADLAIADLHQANLHQAAALERANLTGANLEDANLEGNTILEGGNNNLT

Calculated average isotopic mass = 20832 (N-terminal Met cleaved)

Figure S55. ESI–MS spectrum of Np276 Aha101.
2.7.4 Preparation of substrates for Endo-A catalysed glycosylation of Np276

Preparation of GlcNAc-OCH$_2$-triazole-61Np276 (25a)

A freshly prepared solution of copper(I) bromide (99.999%) in acetonitrile (89 μL, 10 mg/mL) was premixed with an acetonitrile solution of tris-triazolyl amine ligand (36 μL, 127 mg/mL). The preformed Cu-complex solution (125 μL) was added to a NP276 Aha61 protein solution (500 μL, 0.66 mg/mL) and mixed thoroughly. Propargyl 2-acetamido-2-deoxy-β-D-glucopyranoside (12.3 mg, 47.5 μmol) in sodium phosphate buffer (400 μL, 50 mM, pH 8.2) was added to the above mixture and the reaction was agitated on a rotator for 6 h at room temperature. Small molecules were removed from a 500 μL reaction mixture aliquot by loading the sample onto a PD10 desalting column (GE Healthcare) previously equilibrated with 10 column volumes of pH 7.0 sodium phosphate buffer (50 mM) and eluting with 1 mL of the same buffer. The solution was concentrated on a vivaspin membrane concentrator (10 kDa molecular weight cut off) and washed with sodium phosphate buffer (3 x 100 μL, 50 mM, pH 7.0). Finally, the solution was concentrated to 250 μL and the product was characterized by LC–MS (calc. 21091; found 21090). The collected sample (0.34 mg/mL by BCA assay) was flash frozen with liquid nitrogen and stored at –20 ºC.
Figure S56. ESI–MS spectrum of GlcNAc-OCH$_2$-triazole-61Np276 (0.34 mg/mL by BCA assay) after 6 h of reaction (25a).

Preparation of GlcNAc-triazole-61Np276 (26a)

2-Acetamido-2-deoxy-β-D-glucopyranosyl azide (16.3 mg, 66.3 μmol) was dissolved in sodium phosphate buffer (50 μL, 50 mM, pH 8.2). A freshly prepared solution of copper(I) bromide (99.999%) in acetonitrile (124 μL, 10 mg/mL) was premixed with an acetonitrile solution of tris-triazolyl amine ligand (50 μL, 127 mg/mL). The preformed Cu-complex solution (174 μL) was added to the above solution and mixed thoroughly. NP276 Hpg61 protein solution (1 mL, 0.46 mg/mL) was added to the mixture and the reaction was agitated on a rotator for 6 h at room temperature. Small molecules were removed from the reaction mixture by loading the sample onto a 2 x PD10 desalting column (GE Healthcare) previously equilibrated with 10 column volumes of pH 7.0 sodium phosphate buffer (50 mM) and eluting with 2 x 1 mL of the same buffer. The collected sample was concentrated on a vivaspin membrane concentrator (10 kDa molecular weight cut off) and washed with sodium phosphate buffer (3 x 100 μL, 50 mM, pH 7.0). Finally, the solution was concentrated to 500 μL and the product characterized by LC–MS (calc. 21062; found 21062). The collected sample (0.37 mg/mL by BCA asaay) was flash frozen with liquid nitrogen and stored at -20 ºC.
Figure S57. ESI–MS spectrum of GlcNAc-triazole-61Np276 (0.37 mg/mL by BCA assay) after 6 h of reaction (26a).

Preparation of GlcNAc-OCH2-triazole-101Np276 (28a)

A freshly prepared solution of copper(I) bromide (99.999%) in acetonitrile (147 μL, 10 mg/mL) was premixed with an acetonitrile solution of tris-triazolyl amine ligand (73 μL, 127 mg/mL). The preformed Cu-complex solution (220 μL) was added to a NP276-101Aha protein solution (2 mL, 0.29 mg/mL) and mixed thoroughly. Propargyl 2-acetamido-2-deoxy-β-D-glucopyranoside (21.7 mg, 83.5 μmol) in sodium phosphate buffer (50 μL, 50 mM, pH 8.2) was added to the above mixture and the reaction was agitated on a rotator for 3 h at room temperature. Small molecules were removed from the reaction mixture by loading the sample onto a PD10 desalting column (GE Healthcare) previously equilibrated with 10 column volumes of pH 7.0 sodium phosphate buffer (50 mM) and eluting with 3.5 mL of the same buffer. The solution was concentrated on a vivaspin membrane concentrator (10 kDa molecular weight cut off) and washed with sodium phosphate buffer (3 x 100 μL, 50 mM, pH 7.0). Finally, the solution was concentrated to 500 μL and the product was characterized by LC–MS.
The collected sample (0.22 mg/mL by BCA assay) was flash frozen with liquid nitrogen and stored at −20 ºC.

Figure S58. ESI–MS spectrum of GlcNAc-OCH₂-triazole-101Np276 (0.22 mg/mL by BCA assay) after 3 h of reaction (28a).

Preparation of GlcNAc-S-61NP276 (27a)

Np276 Cys61 (1.00 mL, c = 0.79 mg/mL, pH 8.0 sodium phosphate) was reduced with DTT (5 mg) (15 min. RT). 500 µL of the reduced protein was passed through a PDmini column into pH 8.0 sodium phosphate buffer and the remaining 500 µL was passed through a PDmini column into pH 6.0 sodium phosphate buffer. The proteins solutions were kept on ice. A stock solution of MSH was prepared by dissolving 3.4 mg, 567 µL of DMF. Two reactions were set up: one at pH 8.0 and one at pH 6.0. Accordingly, 100 µL of the protein solution was mixed with 5 µL of the MSH solution at 4 ºC. The reaction was shaken at 4 ºC and then analyzed by LCMS. A mixture NH₂ adducts were observed at both pH values. Fewer NH₂ groups were observed at pH 6.0. ESI-MS are shown below.
pH 8.0:

![Graph of ESI-MS spectra for pH 8.0 reaction]

pH 6.0:

![Graph of ESI-MS spectra for pH 6.0 reaction]

Figure S59. ESI–MS spectra of the reaction of Np276 Cys61 with MSH at pH 8.0 and pH 6.0, respectively.

MSH was not suitable for selectively converting cysteine to dehydroalanine on NP276 at position 61. An alternative method was used that is adapted from a recent dialkylation, elimination of cysteine to dehydroalanine reported by Kajihara.22 A full account of dehydroalanine synthesis on protein substrates, including the use of dibromide, is forthcoming.23

Synthesis of dibromide reagent

\[
\text{HO-CH}_2-\text{COOH} \quad \xrightarrow{\text{1. SOCl}_2} \quad \text{CO-CH}_2-\text{COOH} \quad \xrightarrow{\text{2. NBS}} \quad \text{Cl-CH}_2-\text{Br-CH}_2-\text{Br} \quad \xrightarrow{\text{NH}_4\text{OH}} \quad \text{HO-CH}_2-\text{Br-CH}_2-\text{Br-NH}_2
\]

50% from adipic acid (meso, d/l)
α,α′-Di-bromo-adipyl(bis)amide was prepared using a procedure adapted from the literature.24,25 Adipic acid (25.00 g, 171.1 mmol) was added to a 500 mL round bottom flask and suspended in thionylchloride (75.0 mL, 1034 mmol). The flask was equipped with a condenser and the reaction was heated to reflux (open to air, bath temp 80 °C). After 30 minutes at reflux, all adipic acid had dissolved. The reaction was stirred for an additional 60 minutes at reflux and then cooled to room temperature. CCl\textsubscript{4} (100 mL) was added to the reaction followed by NBS (73.1 g, 410.7 mmol). The reaction was stirred vigorously and 10 drops of HBr (48% aq) was added by pipette. The reaction was heated to reflux, again open to air. The reaction gradually turns from red to black over the course of an hour. After 2 hours at reflux, the reaction was cooled to room temperature and then to 0 °C. The mixture was stirred at 0 °C to ensure all succinimide had precipitated. The solid was removed by filtration. Et\textsubscript{2}O (50 mL) was used to rinse and complete the filtration. The filtrate was concentrated under reduced pressure to give a thick, dark red liquid. In a 500 mL round bottom flask, 200 mL of NH\textsubscript{4}OH (25% aq.) was cooled to 0 °C. The crude acid chloride was added dropwise over 20 minutes to the ammonia solution with rapid stirring. After the addition was complete, the reaction was stirred vigorously at 0 °C for 1 hour. The bis-amide product precipitated from the reaction mixture. The dark solid was isolated by filtration and partially dried. The product was purified by triturating in MeOH/H\textsubscript{2}O: The solid was suspended in H\textsubscript{2}O (100 mL) and MeOH (100 mL) and heated to 60 °C. The mixture was stirred rapidly at 60 °C for 30 minutes. After this time, the mixture was cooled to room temperature. The resulting white solid (a mixture of meso and d/l diastereomers) was isolated by filtration and washed with MeOH (200 mL). The product was dried under high vacuum (25.75 g, 50%). IR (\textnu\textsubscript{max}, KBr): 3302, 2946, 2801, 1684, 1418, 1319, 1277, 1250, 1220, 1194, 978, 876. 1H NMR (400 MHz, DMSO): \delta = 1.75-2.08 (4H, m, CH\textsubscript{2}CH\textsubscript{2}), 4.28-4.36 (2H, m, 2 × CHBr), 7.30 (2H, s), 7.69 (2H, s) (2 × NH\textsubscript{2}). 13C NMR (100 MHz, DMSO): (both diastereomers reported), \delta = 32.5, 32.6 (CH\textsubscript{2}CHBr), 48.2, 48.5 (CH\textsubscript{2}CHBr), 169.87, 169.92 (C=O). LRMS m/z (ESI+): 324.9 [M+Na]+.

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
Np276 Cys61 (2.5 mL, 1.1 mg/mL in pH 8.0 sodium phosphate, 50 mM) was reduced by the addition of 10 mg DTT. The solution was shaken at room temperature for 15 minutes to reduce and contaminant disulfide. After this time, the protein solution was passed through a PD10 column (GE Healthcare), eluting with the same buffer. The resulting protein solution was used immediately. Accordingly, 2.5 mL of the Np276 protein (c = 0.79 mg/mL) was added to a 15 mL plastic tube and kept at room temperature. A stock solution of di-bromide was prepared by dissolving 218 mg in 1.91 mL DMF. A 125 μL aliquot of the di-bromide solution was added to the protein solution and the reaction was vortexed to homogenize and immediately placed in a 37 °C incubator with shaking. After 15 minutes, an additional 125 μL aliquot of the di-bromide solution was added to the reaction. After another 15 minutes, a third and final 125 μL aliquot of the di-bromide solution was added. The reaction was shaken at 37 °C for a final 30 minutes and then analyzed by LCMS. A protein mass corresponding to the Dha protein was observed (20776 calculated, 20779 found). Precipitated di-bromide was removed by centrifugation and the protein solution was stored on ice. ESI-MS are shown below.

Figure S60. ESI–MS spectrum of Np276 Dha61.
A stock solution of Ellman’s Reagent was prepared by dissolving 0.5 mg in 250 μL of sodium phosphate buffer (pH 8.0, 50 mM). A 140 μL aliquot of the dehydroalanine containing protein (0.79 mg/mL in pH 8.0 sodium phosphate buffer) was mixed with 10 μL of the Ellman’s solution. The solution was incubated at room temperature for 15 minutes and then analyzed by LCMS. No reaction was observed, indicating complete consumption of cysteine during the elimination reaction (20776 calculated, 20780 observed). ESI-MS are shown below. Under identical conditions, Np276 Cys61 is converted to the Ellman disulfide (see next).

Figure S61. ESI–MS spectrum when Np276 Dha61 is incubated with Ellman’s reagent – to confirm all Cys was consumed in the previous step.

Np276 Cys61 (140 μL of a 0.79 mg/mL solution in pH 8.0 sodium phosphate buffer, 50 mM) was mixed with 10 μL of the Ellman’s reagent solution prepared above. The reaction was shaken at room temperature for 15 minutes and then analyzed by LCMS. Full conversion to the Ellman disulfide was observed (21007 calculated, 21010 observed). ESI-MS are shown below.
A 100 μL aliquot of the Dha containing Np276 was mixed with 5 μL of 2-mercaptoethanol. The reaction was shaken at 37 °C for 1 hour. After this time, full conversion to the thioether was observed by LCMS (20854 calculated, 20860 observed). ESI-MS are shown below.

Figure S63. ESI–MS spectrum of the addition of mercaptoethanol to Np276 Dha61 – to confirm the presence of Dha.
A 1.00 mL aliquot of the Dha containing Np276 (c = 0.79 mg/mL) was mixed with 135 mg of thio-GlcNAc. The reaction was shaken at 37 °C for 2 hours. After this time, small molecules were removed by dialysis (2 × 4L pH 7.0 sodium phosphate, 50 mM). Full conversion to the thioether was observed by LCMS (21013 calculated, 21013 observed). ESI-MS are shown below.

Figure S64. ESI–MS spectrum of GlcNAc-S-61Np276 (27a).
2.7.4 Endo-A enzymatic glycosylation on Np276 substrates

General procedure for the Endo-A enzymatic glycosylation on Np276 substrates

To a solution of GlcNAc-OCH$_2$-triazole-61Np276 25a (150 μL of 0.5 mg/mL, 3.614 nmol) in 50 mM sodium phosphate buffer (pH 7.0), disaccharide oxazoline 1 (370 μg, 1.012 μmol) and Endo A (10 milliunits) were added and the mixture was rotated on a lab rotisserie at 22 ºC. The reaction was analyzed directly by LC–MS.

Endo A-catalyzed glycosylation of GlcNAc-OCH$_2$-triazole-61NP276 25a (0.34 mg/mL)

After 2h incubation:

After 6h incubation:
Figure S65. ESI–MS spectra after 2 and 6 h incubation of $25a$ with Endo A and oxazoline 1.

Endo A-catalyzed glycosylation of GlcNAc-triazole-61NP276 26a (0.37 mg/mL)

After 2h incubation:

After 6h incubation:
After 8h incubation:

Figure S66. ESI–MS spectra after 2, 6 and 8 h incubation of 26a with Endo A and oxazoline 1.

Endo A-catalyzed glycosylation of GlcNAc-S-61NP276 27a (0.35 mg/mL)

After 6h incubation:

Figure S67. ESI–MS spectra after 6 h incubation of 27a with Endo A and oxazoline 1.
Endo A-catalyzed glycosylation of GlcNAc-OCH$_2$-triazole-101NP276 28a (0.22 mg/mL)

After 2h incubation:

After 4h incubation:

Figure S68. ESI–MS spectra after 2 and 4 h incubation of 28a with Endo A and oxazoline 1.
2.8. Peptidase activity of modified glycoproteins

S-linked Glycoproteins

SBL-S156C (unmodified), SBL-156-S-GlcNAc 17a, and SBL-156-S-GlcNAc-GlcNAc-Man 17b were prepared at a concentration of 0.01 mg/mL in pH 8.0 sodium phosphate (50 mM). The sample of SBL-156-S-GlcNAc-GlcNAc-Man 17b contained 0.11 μg/mL of EndoA from the enzymatic extension reaction. EndoA was separately prepared at a concentration of 0.11 μg/mL in the same buffer. 200 μL aliquots of each protein sample were added to a 96-well plate. A 2 μL aliquot of SucAAPFpNA (0.20 M in DMSO, Bachem) was added to each of the protein samples. All SBL samples turned yellow immediately upon addition of the peptide substrate. The yellow solution indicates liberation of p-nitroanaline (pNA), confirming peptidase activity of all SBL samples. The solution of EndoA and SucAAPFpNA was colorless. All protein solutions and the peptide solution alone at the same concentration are colorless (See below).
SeS-linked Glycoproteins

SBL-S156C (unmodified), SBL-C156-SSeGlcNAc 22a, and SBL-C156-SSe(GlcNAc)2Man 22b were prepared at a concentration of 0.01 mg/mL in pH 8.0 sodium phosphate (50 mM). The sample of SBL-C156-SSe(GlcNAc)2Man 22b contained 0.11 μg/mL of EndoA from the enzymatic extension reaction. EndoA was separately prepared at a concentration of 0.11 μg/mL in the same buffer. 200 μL aliquots of each protein sample were added to a 96-well plate. A 2 μL aliquot of SucAAPFpNA (0.20 M in DMSO, Bachem) was added to each of the protein samples. All SBL samples turned yellow immediately upon addition of the peptide substrate. The yellow solution indicates liberation of p-nitroaniline (pNA), confirming peptidase activity of all SBL samples. The solution of EndoA and SucAAPFpNA was colorless. All protein solutions and the peptide solution alone at the same concentration are colorless (See below).
3. References

4. NMR Spectra
Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
Supporting Information

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
Chemical Shift (ppm)
Chemical Shift (ppm)

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
Supporting Information

\[
\text{BocHN}_3\text{CO}_2\text{H}
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>50.32</td>
</tr>
<tr>
<td>Nucleus</td>
<td>13C</td>
</tr>
<tr>
<td>Number of Transients</td>
<td>512</td>
</tr>
<tr>
<td>Origin</td>
<td>dpc200</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>zgq09</td>
</tr>
<tr>
<td>Receiver Gain</td>
<td>16384.00</td>
</tr>
<tr>
<td>SW(cyclical) (Hz)</td>
<td>12077.29</td>
</tr>
<tr>
<td>Solvent</td>
<td>MeOD</td>
</tr>
<tr>
<td>Spectrum Offset (Hz)</td>
<td>5082.6479</td>
</tr>
<tr>
<td>Sweep Width (Hz)</td>
<td>12076.93</td>
</tr>
<tr>
<td>Temperature (degree C)</td>
<td>27.000</td>
</tr>
</tbody>
</table>
NMR Spectral Details

- **Frequency (MHz)**: 50.32
- **Nucleus**: 13C
- **Number of Transients**: 512
- **Origin**: dept135
- **Receiver Gain**: 16384.00
- **SW(cyclic) (Hz)**: 12077.29
- **Spectrum Offset (Hz)**: 5064.0581
- **Sweep Width (Hz)**: 12076.95
- **Temperature (degree C)**: 27.000

![NMR Spectrum](image)

Chemical Shift (ppm)

- 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
N_3

H_2N

\text{CO}_2\text{H}

Frequency (MHz) 400.20
Nucleus 1H
Number of Transients 16
Origin av400
Pulse Sequence zg50
Receiver Gain 90.50
SW(cyclic) (Hz) 8278.15
Solvent DEUTERIUM OXIDE
Spectrum Offset (Hz) 2471.3989
Sweep Width (Hz) 8277.99
Temperature (degree C) 27.000

Chemical Shift (ppm)
Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010
Supporting Information

Chemical Shift (ppm)

Frequency (MHz) 100.63
Nucleus 13C
Number of Transients 256
Origin av400
Pulse Sequence zgpg30
Receiver Gain 32768.00
SW(cyclical) (Hz) 26178.01
Solvent DMSO-d6
Spectrum Offset (Hz) 9979.9680
Sweep Width (Hz) 26177.21
Temperature (degree C) 27.000
Supporting Information

![Chemical Structure](image)

Frequency (MHz) 100.63
Nucleus 13C
Number of Transients 256
Origin av400
Pulse Sequence zgpg30
Receiver Gain 32768.00
SW(cyclical) (Hz) 26178.01
Solvent DMSO-d6
Spectrum Offset (Hz) 9979.9580
Sweep Width (Hz) 26177.21
Temperature (degree C) 27.000

[Graph showing the chemical shift spectrum with peaks at around 170 ppm.]

Supplementary Material (ESI) for Chemical Science
This journal is (c) The Royal Society of Chemistry 2010