Catalytic Enantioselective Asssembly of Complex Molecules Containing Embedded Quaternary Stereogenic Centers from Simple Anisidine Derivatives

Rafael Leon, Anup Jawalekar, Thomas Redert and Matthew J. Gaunt

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.

mjg32@cam.ac.uk

General Information

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded using a Bruker AM 400 (400 MHz) or an Avance 500 (500 MHz) spectrometer. Carbon nuclear magnetic resonance (¹³C NMR) were recorded using a Bruker AM 400 (100 MHz) or an Avance 500 (125 MHz) spectrometer. All spectra were recorded at ambient temperature (298 K). Chemical shifts (δ) are quoted in ppm relative to residual solvent and coupling constants (*J*) are quoted in hertz (Hz). Multiplicity is reported with the following abbreviations: s=singlet, d=doublet, t=triplet, q=quartet, septet=sp, m=multiplet, b=broad, app=apparent.

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum One-FT-IR spectrometer as thin films deposited in dichloromethane. HRMS were measured either at the University of Cambridge on a Micromass Q-TOF spectrometer using electrospray ionisation (ESI) or at the EPSRC Mass Spectrometry Service at the University of Swansea. Optical rotations were measured in CHCl₃ on a Perkin Elmer 343 Polarimeter; $[\alpha]_D$ values are reported in 10⁻¹ degrees cm² g⁻¹ at 589 nm. Chiral HPLC analysis was performed n HP Agilent 1100 apparatus. Melting points (m.p.) were recorded using a Reichert hot stage apparatus and are reported uncorrected.

Analytical thin layer chromatography (TLC) was performed using pre-coated Merck glass backed silica gel plates (Silicagel 60 F254). Flash column chromatography was undertaken on Merck Kieselgel 60 (230-400 mesh) under a positive pressure of nitrogen unless otherwise stated.

All solvents used were dried and distilled using standard methods. Dichloromethane was distilled from calcium hydride and 1,2-dichloroethane was purchased in anhydrous form. All reagents were purchased at the highest commercial quality. All reactions were monitored by TLC or from ¹H NMR spectra taken from reaction samples, with conversions confirmed by use of an NMR standard. Reactions were carried out under an atmosphere of nitrogen unless otherwise stated.

1: General procedure for amine coupling with 3-substituted-prop-2-ynoic acid

3-substituted-prop-2-ynoic acid (1eq), EDCI (1.2eq) and HOBT (0.1eq) were added to a solution of (*N*-4,4-diethoxyalkyl)-4-methoxyaniline (1eq) in CH_2Cl_2 (0.26 M) at room temperature. The resulting solution was stirred at room temperature until completion, quenched with NaHCO_{3(aq.)} and extracted twice with CH_2Cl_2 . The combined organic layers were washed with water and brine, dried over MgSO₄, concentrated in vacuo and purified by flash chromatography on silica gel to afford the desired compounds.

2: General procedure for acetal removal

2N HCl (1.2 mL/mmol) was added dropwise to a solution of acetal (1 eq) in THF (6 mL/mmol) at room temperature, and the resulting solution was stirred until completion. The reaction was quenched with aqueous NaHCO₃ solution and extracted with diethyl ether. The organic layer was dried over MgSO₄, concentrated in vacuo and purified by flash chromatography on silica gel.

3: General procedure for ECED transformation

ICl (2 eq) in CH₂Cl₂ (1 M) was added to a solution of the aldehyde 1 (1 eq) (**method** A) or the corresponding diethoxyacetal (1 eq) (**method B**) in CH₂Cl₂ (0.1 mM) at -78 °C over a period of 15 minutes. The resulting solution was stirred for 10-30 minutes and quenched with saturated aqueous Na₂S₂O₃ solution. It was allowed to warm up to room temperature and extracted twice with CH₂Cl₂. The combined organic layers were dried over MgSO₄, concentrated in vacuo to afford the corresponding iodo-cyclohexadienone that was subjected directly to enantioselective desymmetrizing cyclization without further purification.

Catalyst (**3b**) (0.2 eq) and benzoic acid (0.2 eq) were added to the solution of aldehyde **1** (1 eq) in CH_2Cl_2 (0.3 M) at 0 or -20 °C. The resulting mixture was stirred for 1.5 h to 48 h, quenched by water and extracted with CH_2Cl_2 (2 x 7 mL). The combined organic layers were dried over MgSO₄, concentrated in vacuo and purified by flash chromatography on silica gel.

The ee of the reaction was determined by HPLC analysis of the corresponding Wittig olefination product (7), formed using the procedure outlined below (4).

4: General procedure for Wittig reaction

(tert-Butoxycarbonylmethylene)triphenylphosphorane (1.5 eq) or (Carbethoxymethylene)triphenylphosphorane (1.5 eq) was added to a solution of the corresponding aldehyde at -78 °C. The solution was stirred for 12 h, slowly warming to room temperature. The reaction mixture was quenched with water and extracted with CH_2Cl_2 (2x), the combined organic layers were dried over MgSO₄, concentrated in vacuo and purified by flash chromatography on silica gel.

N-(3,3-diethoxypropyl)-4-methoxyaniline (14)

DMSO (5 mL) was added to a mixture of 4-iodoanisole (0.5 g, 2.14 mmol), CuI (0.0406 g, 0.21 mmol), L-proline (0.0493 g, 0.43 mmol) and K_2CO_3 (powdered) (0.59 g, 4.27 mmol) in a round bottom flask, and it was flushed with N₂ (3 times), followed by addition of 3,3-diethoxypropan-1-amine (0.52 mL, 3.21 mmol). The reaction mixture

was degassed and stirred under N₂ atmosphere at 80°C for 26h, diluted with water and extracted with diethyl ether (3 x 10 mL). The combined organic layers were washed with water and brine, dried over MgSO₄, concentrated in vacuo and purified by flash chromatography on silica gel (Pet-ether:Et₂O; 0 – 15%) to afford the product as a yellow oil (14) (0.45 g, 83% yield); Rf 0.52 (Pet.-Ether:Diethyl ether, 1:1); λ_{max} (film) / cm⁻¹ 3389, 1511, 1233, 1121, 1039, 977, 817; ¹H NMR (400 MHz, CD₃Cl₃) $\delta_{\rm H}$ 6.78 (2H, d, *J* = 9.1 Hz, H⁴), 6.60 (2H, d, *J* = 8.8 Hz, H⁵), 4.63 (1H, t, *J* = 5.3 Hz, H³), 3.73 (3H, s, OC<u>*H*₃</u>), 3.69-3.53 (2H, m, OC<u>*H*₂CH₃</u>), 3.50-3.42 (2H, m, OC<u>*H*₂CH₃), 3.18 (2H, t, *J* = 6.4 Hz, H¹), 1.95-1.82 (2H, m, H²), 1.23 (6H, t, *J* = 6.8 Hz, OCH₂C<u>*H*₃); ¹³C NMR (100 MHz, CD₃Cl₃) $\delta_{\rm C}$ 152.6, 142.9, 115.3, 114.7, 102.6, 61.9, 56.2, 41.6, 33.6, 15.8; HRMS (ES⁺) mass calc'd. For C₁₄H₂₃NO₃ 253.1678; found [(M+H)⁺] 254.1759.</u></u>

(N-4,4-diethoxyalkyl)-4-methoxyaniline (15)

DMSO (40 mL) was added to a mixture of 4-iodoanisole (5 g, 21.36 mmol), CuI (0.405 g, 2.1 mmol), L-proline (0.493 g, 4.3 mmol) and K_2CO_3 (powdered) (5.9 g, 42.7 mmol) in a round bottom flask, and it was flushed with N_2 (3 times), followed by addition of 4,4-diethoxybutan-1-amine (5.16 g, 32.04 mmol). The reaction mixture

was degassed and stirred under N₂ atmosphere at 80°C for 26h, diluted with water and extracted with diethyl ether (3 x 25mL). The combined organic layers were washed with water and brine, dried over MgSO₄, concentrated in vacuo and purified by flash chromatography on silica gel (CH₂Cl₂:Et₂O; 0 – 15%) to afford the product as a yellow oil (**15**) (4.83 g, 85% yield); Rf 0.52 (Pet.-Ether:Diethyl ether, 1:1); λ_{max} (film) / cm⁻¹ 3389, 2874, 1511, 1233, 1121, 1037, 816; ¹H NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 6.90 (2H, d, *J* = 8.9 Hz, H⁵), 6.50 (2H, d, *J* = 8.9 Hz, H⁶), 4.47 (1H, t, *J* = 5.6 Hz, H⁴), 3.58 (2H, dq, *J* = 9.3 Hz, *J* = 7.0 Hz, OC<u>H</u>₂CH₃), 3.45 (3H, s, OC<u>H</u>₃), 3.40 (2H, dq, *J* = 9.3 Hz, *J* = 7.0 Hz, OC<u>H</u>₂CH₃), 2.92 (2H, t, *J* = 7.0 Hz, H¹), 1.75-1.68 (2H, m, H²), 1.63-1.54 (2H, m, H³), 1.19 (6H, t, *J* = 7.0 Hz, OCH₂C<u>H</u>₃); ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 152.8, 143.3, 115.4, 114.3, 103.0, 61.0, 55.5, 44.9, 31.7, 25.5, 15.8; HRMS (ES⁺) mass calc'd. For C₁₅H₂₅NO₃ 267.1834; found [(M+H)⁺] 268.1916.

N-(4,4-diethoxybutyl)-*N*-(4-methoxyphenyl)-3-phenylpropiolamide (16)

General procedure **1**, *N*-(4,4-diethoxybutyl)-4methoxyaniline (**15**) (2.0 g, 7.48 mmol) and 3-phenylprop-2-ynoic acid (1.09 g, 7.51 mmol), EDCI (1.72 g, 8.92 mmol), HOBT (101 mg, 0.75 mmol) and CH_2Cl_2 (30 mL), 16 h, chromatography on silica gel ($CH_2Cl_2:Et_2O$, 0-5 %)

to afford compound **16** as a yellow oil (2.95 g, 95% yield); Rf 0.40 (Pet-Ether:Diethyl ether, 1:1); λ_{max} (film) / cm⁻¹ 2973, 2214, 1631, 1510, 1392, 1293, 1247, 1058, 835, 757, 689; ¹H NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 7.12-7.07 (2H, m, <u>Ph</u>), 7.03 (2H, d, J = 8.9 Hz, H⁵), 6.92-6.88 (1H, m, H⁹), 6.86-6.80 (2H, m, <u>Ph</u>), 6.71 (2H, d, J = 8.9 Hz, H⁶), 4.49-4.43 (1H, m, H⁴), 3.86-3.83 (2H, m, H¹), 3.54 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.37 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.37 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 159.4, 154.1, 135.1, 132.5, 130.1, 129.7, 121.3, 114,4, 102.7, 90.4, 84.3, 61.0, 55.0, 48.4, 31.2, 23.4, 15.6; HRMS (ES⁺) mass calc'd. For C₂₄H₂₉NO₄ 395.2097; found [(M+Na)⁺] 418.2002.

3-(3-chlorophenyl)-N-(4,4-diethoxybutyl)-N-(4-methoxyphenyl)propiolamide (17)

General procedure **1**, *N*-(4,4-diethoxybutyl)-4methoxyaniline (**15**) (500 mg, 1.87 mmol) and 3chlorophenyl-propiolic acid (370.2 mg, 2.05 mmol), EDCI (553.5 mg, 2.80 mmol), HOBT (25.2 mg, 0.18 mmol) and CH_2Cl_2 (5 mL), 16 h, chromatography on silica gel (petether:EtOAc, 7:3) to afford compound **17** as a yellow oil

(781 mg, 97% yield); Rf 0.45 (pet.-ether/EtOAc, 6:4); λ_{max} (film) / cm⁻¹ 1679, 1586, 1562, 1472, 1399, 1298, 1269, 1214, 1080, 1032, 971, 934, 901, 783, 735, 719, 679; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 7.00-6.86 (3H, m, H⁵, H⁷), 6.81-6.71 (2H, m, H⁸, H⁹), 6.63 (2H, d, J = 8.9, H⁶), 6.44 (1H, t, J = 7.9 Hz, H¹⁰), 4.44 (1H, t, J = 4.9, H⁴), 3.79 (2H, t, J = 6.8, H¹), 3.5 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.33 (2H, qd, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.25 (3H, s, OC<u>H</u>₃), 1.87-1.56 (4H, m, H², H³),

1.09 (6H, t, J = 7.0 Hz, OCH₂C<u>H₃</u>); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 159.5, 153.8, 134.9, 134.3, 133.4, 130.3, 130.1, 129.8, 129.7, 123.0, 114.4, 102.7, 88.7, 85.1, 61.1, 55.0, 48.4, 31.2, 23.4, 15.6; HRMS (ES⁺) mass calc'd. For C₂₄H₂₈ClNO₄ 429.1707; found [(2M+NH₄)⁺] 876.3756.

N-(4,4-diethoxybutyl)-*N*-(4-methoxyphenyl)oct-2-ynamide (18)

General procedure 1, *N*-(4,4-diethoxybutyl)-4-methoxyaniline (15) (300 mg, 1.12 11 0 $^$

1633, 1510, 1393, 1291, 1246, 1058, 834, 733; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 6.95 (2H, d, J = 7.2 Hz, H⁵), 6,65 (2H, d, J = 7.2 Hz, H⁶), 4.43 (1H, t, J = 6.4 Hz, H⁴), 3.83-3.75 (2H, m, H¹), 3.50-3.38 (2H, m, OC<u>H₂</u>CH₃), 3.37-3.21 (2H, m, OC<u>H₂</u>CH₃), 3.25 (3H, s, OC<u>H₃</u>), 1.81-1.62 (6H, m, H², H³, H⁷), 1.10 (6H, t, J = 5.6 Hz, OCH₂C<u>H₃</u>), 1.09-0.82 (4H, m, H⁸, H⁹), 0.86-0.67 (2H, m, H¹⁰), 0.74 (3H, t, J = 5.6 Hz, H¹¹); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 159.2, 154.3, 135.6, 130.1, 114.4, 102.7, 92.8, 76.6, 61.0, 54.8, 48.4, 31.2, 30.8, 27.6, 23.4, 22.3, 18.7, 15.6, 13.9; HRMS (ES⁺) mass calc'd. For C₂₃H₃₅NO₄ 389.2566; found [(M+Na)⁺] 412.2476.

N-(4,4-diethoxybutyl)-*N*-(4-methoxyphenyl)-6-(tetrahydro-2*H*-pyran-2-yloxy)hex-2-ynamide (19)

General procedure 1, N-(4,4-diethoxybutyl)-4methoxyaniline (15) (400 mg, 1.5 mmol) and 6-(tetrahydro-2*H*-pyran-2-yloxy)hex-2-ynoic acid (382 mg, 1.8 mmol), EDCI (345 mg, 1.8 mmol), HOBT (20 mg, 0.15 mmol) and CH₂Cl₂ (12 mL), 15 h, chromatography on silica gel (CH₂Cl₂:acetone, 9:1) to

afford compound **19** as a yellow oil (450 mg, 87% yield). Rf 0.40 (CH₂Cl₂:acetone, 9:1); λ_{max} (film) / cm⁻¹ 2938, 1634, 151, 1247, 1032, 835, 733; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 6.94 (2H, d, J = 8.9 Hz, H⁵), 6.71 (2H, d, J = 8.9 Hz, H⁶), 4.48 (1H, t, J = 8.9 Hz, H¹⁰), 4.45 (1H, t, J = 3.3 Hz, H⁴), 3.82-3.69 (2H, m, H¹), 3.75-3.66 (1H, m, H^{11a}), 3.60-3.49 (3H, m, OC<u>H₂CH₃, H^{14a}), 3.44-3.33 (3H, m, OC<u>H₂CH₃, H^{14b}), 3.32 (3H, s, OC<u>H₃)</u>, 3.08-3.01 (1H, m, H^{11b}), 2.05-1.93 (2H, m, H⁹), 1.78-1.65 (4H, m, H², H³), 1.59-1.53 (2H, m, H⁷), 1.44-1.22 (6H, m, H⁸, H¹², H¹³), 1.14 (6H, t, J = 7.05 Hz, OCH₂C<u>H₃</u>);¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 159.3, 154.2, 135.5, 130.0, 114.4, 102.7, 98.4, 92.3, 76.7, 65.3, 61.4, 60.9, 54.9, 48.3, 31.2, 30.8, 28.3, 25.7, 23.4, 19.4, 15.7, 15.6; HRMS (ES⁺) mass calc'd. For C₂₆H₃₉NO₆ 461.2777; found [(M+H)⁺] 462.2834.</u></u>

3-cyclopropyl-N-(4,4-diethylbutyl)-N-(4-methoxyphenyl)propiolamide (20)

General procedure 1, N-(4,4-diethoxybutyl)-4methoxyaniline (15) (1.0 g, 4.50 mmol) and cyclopropylpropiolic acid (545 mg, 4.95 mmol), EDCI (2.44 g, 12.3 mmol), HOBT (91.2 mg, 0.68 mmol) and CH₂Cl₂ (20 mL), 20 h, chromatography on silica gel (pet-ether:EtOAc, 7:3) to afford compound **20** as a yellow oil (1.39 g, 86% yield); Rf 0.48 (Pet-Ether:EtOAc, 6:4); λ_{max} (film) / cm⁻¹ 2973, 2343, 2226, 1630, 1511, 1443, 1395, 1292, 1248, 1170, 1125, 1059, 1032, 888, 836, 732; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 6.90 (2H, d, J = 8.8 Hz, H⁵), 6.67 (2H, d, J = 8.8 Hz, H⁶), 4.26-4.21 (1H, m, H⁴), 3.58 (3H, s, OC<u>*H*</u>₃), 3.48-3.39 (2H, m, H¹), 3.37 (2H, dq, J = 9.2 Hz, J = 7.0 Hz, C<u>*H*</u>₂CH₃), 3.21 (2H, dq, J = 9.2 Hz, J = 7.0 Hz, OC<u>*H*</u>₂CH₃), 1.45-1.32 (4H, m, H², H³), 0.92 (6H, t, J = 7.0 Hz, CH₂C<u>*H*</u>₃), 0.88-0.82 (1H, m, H⁷), 0.48-0.32 (2H, m, C<u>*H*</u>₂, cycloprop.), 0.25-0.16 (2H, m, C<u>*H*</u>₂, cycloprop.); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 159.7, 155.2, 135.3, 130.3, 114.9, 103.2, 98.3, 70.9, 61.9, 56.1, 48.5, 31.4, 23.4, 15.9, 9.6, 9.5, 0.0; HRMS (ES⁺) mass calc'd. For C₂₁H₂₉NO₄ 359.2097; found [(M+H)⁺] 360.2170.

N-(4,4-diethoxybutyl)-*N*-(4-methoxyphenyl)-3-(thiophen-2-yl)propiolamide (21)

General procedure **1**, N-(4,4-diethoxybutyl)-4methoxyaniline (**15**) (500 mg, 1.87 mmol) and 3-(thiophen-2-yl)propiolic acid (345.6 mg, 2.27 mmol), EDCI (435.84 mg, 2.27 mmol), HOBT (24.3 mg, 0.18 mmol) and CH₂Cl₂ (5 mL), 17 h, chromatography on silica

gel (CH₂Cl₂:Et₂O, 0-5 %) to afford compound **21** as a yellow oil (714 mg, 97% yield); Rf 0.45 (Pet.-Ether:AcOEt, 6:4); λ_{max} (film) / cm⁻¹ 2972, 2875, 2357, 1633, 1511, 1389, 1294, 1249, 1127, 915, 789; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 7.00 (2H, d, J = 8.9 Hz, H⁵), 6.92 (1H, dd, J = 2.9 Hz, J = 1.0 Hz, H⁹), 6.68 (2H, d, J = 8.9 Hz, H⁶), 6.62 (1H, dd, J = 5.0 Hz, J = 1.0 Hz, H⁷), 6.49 (1H, dd, J = 5.0 Hz, J = 2.9 Hz H⁸), 4.46 (1H, t, J = 4.7 Hz, H⁴), 3.85 (2H, t, J = 6.5 Hz, H¹), 3.55 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.38 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.28 (3H, s, OC<u>H</u>₃), 1.81-1.69 (4H, m, H², H³), 1.14 (6H, t, J = 7.0 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 159.4, 154.2, 135.1, 131.8, 130.1, 125.6, 120.5, 114,4, 102.7, 85.9, 84.4, 61.0, 54.9, 48.4, 31.2, 23.4, 15.6; HRMS (ES⁺) mass cal'd. For C₂₂H₂₇NO₄S 401.1661; found [(M+H)⁺] 402.1732.

N-(3,3-diethoxypropyl)-*N*-(4-methoxyphenyl)-3-phenylpropiolamide (22)

General procedure **1**, *N*-(3,3-diethoxypropyl)-4methoxyaniline **14** (0.1 g, 0.39 mmol) and 3-phenylprop-2ynoic acid (0.058 g, 0.39 mmol), EDCI (90.4 mg, 0.47 mmol), HOBT (5.26 mg, 0.039 mmol) and CH_2Cl_2 (5 mL), 15 h, chromatography on silica gel (CH_2Cl_2 :acetone, 0-5 %)

to afford compound **22** as a yellow oil (0.15 g, 99% yield); Rf 0.45 (CH₂Cl₂:acetone, 95:5); λ_{max} (film) / cm⁻¹ 2974, 2215, 1632, 1510, 1247, 1054, 835, 757; ¹H NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 7.06 (2H, d, J = 8.9.Hz, H⁴), 7.00 (2H, d, J = 8.9 Hz, H⁵), 6.81-6.75 (5H, m, <u>Ph</u>), 4.58 (1H, t, J = 4.6 Hz, H³), 3.99-3.83 (2H, m, H¹), 3.57-3.46 (2H, m, OC<u>H₂</u>CH₃), 3.38-3.29 (2H, m, OC<u>H₂</u>CH₃), 3.22 (3H, s, OC<u>H₃</u>), 2.02-1.97 (2H, m, H²), 1.12 (6H, t, J = 6.9 Hz, OCH₂C<u>H₃</u>); ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 159.4, 154.1, 135.3, 132.6, 130.2, 129.6, 121.4, 114.4, 101.5, 90.3, 84.3, 61.3, 54.9, 45.3, 32.4, 15.6; HRMS (ES⁺) mass calc'd. For C₂₃H₂₇NO₄ 381.1940; found [(M+H)⁺] 382.1994.

N-(4-methoxyphenyl)-*N*-methyl-7-(tetrahydro-2*H*-pyran-2-yloxy)hept-2-ynamide (23)

General procedure **1**, 4-Methoxy-*N*-methylaniline (330 mg, 2.40 mmol) and 7-(tetrahydro-2*H*-pyran-2-yloxy)hept-2-ynoic acid (700 mg, 3.09 mmol), EDCI (552 mg, 2.98 mmol), HOBT (33 mg, 0.24 mmol) and CH₂Cl₂ (15 mL), 17 h, chromatography on silica gel (CH₂Cl₂:acetone, 95:5) to afford compound **23** as a yellow oil (500 mg, 60% yield). Rf 0.42 (CH₂Cl₂:acetone, 95:5); λ_{max} (film) / cm⁻¹ 2940, 2224, 1634, 1510, 1368, 1246, 1031, 836, 733; ¹H NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 7.16 (2H, d, *J* = 8.9 Hz, H⁵),

6.88 (2H, d, J = 8.9 Hz, H⁶), 4.51 (1H, t, J = 3.6 Hz, H⁷), 3.83-3.77 (4H, m, OC<u>H₃</u>, H^{11a}), 3.62-3.54 (1H, m, H^{11b}), 3.50-3.44 (1H, m, H^{4a}), 3.27-3.20 (4H, m, NC<u>H₃</u>, H^{4b}), 2.13 (2H, t, J = 6.7 Hz, H¹), 1.87-1.63 (2H, m, H⁸), 1.61-1.46 (4H, m, H¹⁰, H⁹), 1.61-1.36 (4H, m, H³, H²); ¹³C NMR (100 MHz, C₆D₆) δ_{C} 159.3, 154.3, 137.2, 129.1, 114.5, 98.7, 92.6, 76.8, 66.8, 61.8, 55.1, 36.3, 31.2, 28.9, 26.1, 25.0, 19.8, 18.7; HRMS (ES+) mass calc'd. For C₂₀H₂₇NO₄ 345.1940; found [(M+Na)⁺] 368.1822.

N-(4,4-diethoxybutyl)-*N*-(4-methoxyphenyl)propiolamide (24)

General procedure **1**, *N*-(4,4-diethoxybutyl)-4-methoxyaniline (**15**) (1.00 g, 3.74 mmol) and propiolic acid (288.18 mg, 4.11 mmol), EDCI (860.23 mg, 4.48 mmol), HOBT (50.50 mg, 0.374 mmol) and CH_2Cl_2 (50 mL), 15 h, chromatography on silica gel ($CH_2Cl_2:Et_2O$, 0-5 %) to afford compound **24** as a

yellow oil (1.19 g, 79% yield); Rf 0.52 (Pet-Ether:Diethyl ether, 1:1); λ_{max} (film) / cm⁻¹ 2974, 2104, 1634, 1510, 1395, 1247, 1031, 835, 736; ¹H NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 6.90 (2H, d, J = 8.9 Hz, H⁵), 6.65 (2H, d, J = 8.9 Hz, H⁶), 4.43 (1H, t, J = 4.9 Hz, H⁴), 3.73 (2H, t, J = 6.9 Hz, H¹), 3.52 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.35 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.25 (3H, s, OC<u>H₃), 2.21 (1H, s, H⁷), 1.70-1.65 (4H, m, H², H³), 1.12 (6H, t, J = 7.0 Hz, OCH₂C<u>H₃)</u>; ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 159.3, 152.8, 134.3, 129.7, 114,2, 102.7, 78.7, 77.3, 60.8, 54.6, 48.3, 30.8, 22.9, 15.3; HRMS (ES⁺) mass calc'd. For C₁₈H₂₅NO₄ 319.1784; found [(M+Na)⁺] 342.1676.</u>

3-bromo-N-(4,4-diethoxybutyl)-N-(4-methoxyphenyl)propiolamide (9)

N-(4,4-diethoxybutyl)-*N*-(4-methoxyphenyl)propiolamide (**24**) (400 mg, 1.25 mmol) was placed in a flask and dissolved in dry acetone (30 mL). Silver nitrate was added (106.16 mg, 0.62 mmol) to the solution at room temperature. After 5 min the solution was cooled to 0 °C and NBS (232.51 mg, 1.31 mmol) was added portion-wise over 30 min. The mixture was

stirred until completion. The solids were filtered off on a pad of celite that was washed several times with acetone. After removal of the acetone under reduced pressure the residue was purified by column chromatography on silica gel (CH₂Cl₂:Et₂O, 0-10 %) to afford compound **9** as a colourless oil (420.7 mg, 86% yield); Rf 0.42 (Pet.-Ether:AcOEt, 6:4); λ_{max} (film) / cm⁻¹ 2974, 2104, 1717, 1636, 1511, 1396, 1292, 1127, 1033, 836, 728; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 6.80 (2H, d, *J* = 8.9 Hz, H⁵), 6.57 (2H, d, *J* = 8.9 Hz, H⁶), 4.39 (1H, t, *J* = 5.2 Hz, H⁴), 3.67 (2H, t, *J*

= 6.9 Hz, H¹), 3.48 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.31 (2H, dq, J = 9.3 Hz, J = 7.0 Hz, OC<u>H</u>₂CH₃), 3.16 (3H, s, OC<u>H</u>₃), 1.68-1.58 (4H, m, H², H³), 1.12 (6H, t, J = 7.0 Hz, OCH₂C<u>H</u>₃); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 159.4, 152.6, 134.3, 129.8, 114,2, 102.4, 75.7, 61.8, 55.1, 54.8, 48.5, 31.1, 23.1, 15.6; HRMS (ES⁺) mass calc'd. For C₁₈H₂₄BrNO₄ 397.0889; found [(M+NH₄)⁺] 415.1230.

N-(4-methoxyphenyl)-*N*-(4-oxobutyl)-3-phenylpropiolamide (1a)

General procedure **2**, *N*-(4,4-diethoxybutyl)-*N*-(4methoxyphenyl)-3-phenylpropiolamide (16) (1 g, 2.53 mmol), 4 h, chromatography on silica gel (CH₂Cl₂:Et₂O, 0-10%) to afford compound **1a** as a colourless oil (817 mg, 99% yield); Rf 0.40 (CH₂Cl₂:acetone, 96:4) λ_{max}

(film) / cm⁻¹ 2936, 2214, 1721, 1629, 1509, 1391, 1247, 1028, 835, 757, 689; ¹H NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 9.33 (1H, s, H⁴), 7.16-7.12 (2H, m, <u>Ph</u>), 6.97 (2H, d, J = 8.9 Hz, H⁵), 6.92-6.77 (3H, m, <u>Ph</u>), 6.72 (2H, d, J = 8.9 Hz, H⁶), 3.67 (2H, t, J = 7.3 Hz, H¹), 3.29 (3H, s, OC<u>H₃</u>), 1.94 (2H, t, J = 7.3 Hz, H³), 1.64 (2H, dt, J = 7.3 Hz, J = 7.3 Hz, H²); ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 199.9, 159.7, 154.5, 135.2, 132,7, 130,2, 129.9, 128.6, 121.4, 114.6, 90.8, 84.3, 55.2, 48.0, 41.1, 20.7; HRMS (ES⁺) mass calc'd. For C₂₀H₁₉NO₃ 321.1365; found [(M+H)⁺] 322.1449.

3-(3-chlorophenyl)-N-(4-methoxyphenyl)-N-(4-oxobutyl)propiolamide (1b)

General procedure **2**, 3-(3-chlorophenyl)-*N*-(4,4diethoxybutyl)-*N*-(4-methoxyphenyl)propiolamide (**17**) (790 mg, 1.84 mmol), 15 h, chromatography on silica gel (pet.ether/EtOAc, 7:3) to afford compound **1b** as yellow oil (568 mg, 87%). Rf 0.29 (pet.-ether/EtOAc, 6:4); λ_{max} (film) / cm⁻¹

2974, 2930, 2219, 1634, 1591, 1562, 1474, 1442, 1392, 1295, 1248, 1169, 1124, 1058, 1032, 996, 956, 882, 835, 786, 729, 694, 680; ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 9.70 (1H, s, H⁴), 7.21-7.25 (1H, m, H⁸), 7.19 (1H, s, H⁷), 7.16 (2H, d, *J* = 9.0 Hz, H⁵), 7.11 (1H, dd, *J* = 8.3 Hz, *J* = 8.0 Hz, H⁹), 7.09-6.92 (1H, m, H¹⁰), 6.90 (2H, d, *J* = 9.0 Hz, H⁶), 3.79 (3H, s, OC<u>*H*</u>₃), 3.72-3.76 (2H, m, H¹), 2.47 (2H, dt, *J* = 7.3 Hz, *J* = 1.0 Hz, H³), 1.86-1.80 (2H, m, H²); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 201.5, 159.9, 154.8, 134.6, 134.5, 132.6, 130.8, 130.6, 130.0, 128.5, 122.6, 114.9, 90.0, 83.8, 56.0, 48.2, 41.4, 20.5; HRMS (ES⁺) mass calc'd. For C₂₀H₁₈ClNO₃ 355.0975; found [(M+H)⁺] 356.1047.

N-(4-methoxyphenyl)-*N*-(4-oxobutyl)oct-2-ynamide (1c)

General procedure **2**, *N*-(4,4-diethoxybutyl)-*N*-(4methoxyphenyl)oct-2-ynamide (**18**) (300 mg, 0.77 mmol), 16 h, chromatography by (CH₂Cl₂:acetone, 95:5) to afford compound **1c** as a colourless oil (0.240 g, 99% yield). Rf 0.55 (CH₂Cl₂:acetone, 95:5); λ_{max} (film) / cm⁻¹ 2932, 2230, 1721, 1629, 1510, 1393, 1292, 1245, 1031, 834, 733; ¹H

NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 9.24 (1H, s, CHO), 6.89 (2H, d, J = 6.8 Hz, H⁵), 6.65 (2H, d, J = 6.8 Hz, H⁶), 3.57 (2H, t, J = 5.6 Hz, H¹), 3.25 (3H, s, OC<u>H₃</u>), 1.85 (2H, t, J = 5.6 Hz, H³), 1.77-1.62 (2H, m, H²), 1.60-1.56 (2H, m, H⁷), 1.10-0.87 (4H, m, H⁹, H⁸), 0.88-0.72 (2H, m, H¹⁰), 0.75 (2H, t, J = 5.6 Hz, H¹¹); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$

199.6, 159.1, 154.1, 135.1, 129.7, 114.2, 92.9, 76.2, 54.6, 47.6, 40.7, 30.5, 27.3, 22.1, 20.2, 18.5, 13.7; HRMS (ES⁺) mass calc'd. For $C_{19}H_{25}NO_3$ 315.1834; found 316.1904.

6-hydroxy-N-(4-methoxyphenyl)-N-(4-oxobutyl)hex-2-ynamide (25)

General procedure **2**, *N*-(4,4-diethoxybutyl)-*N*-(4methoxyphenyl)-6-(tetrahydro-2*H*-pyran-2yloxy)-hex-2ynamide (**19**) (400 g, 0.87 mmol), 36 h, chromatography by (CH₂Cl₂:acetone, 6:4) to afford compound **25** as a colourless oil (0.210 g, 80% yield). Rf 0.33 (CH₂Cl₂:acetone, 6:4); λ_{max} (film) / cm⁻¹ 3413, 2938, 2231, 1720, 1619, 1511, 1403, 1248,

1034, 837, 736; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 9.32 (1H, s, CHO), 6.93 (2H, d, J = 8.9 Hz, H⁵), 6.72 (2H, d, J = 8.9 Hz, H⁶), 3.59 (2H, t, J = 7.1 Hz, H¹), 3.33 (3H, s, OC<u>H₃</u>), 3.17 (2H, t, J = 6.1 Hz, H⁹), 3.09 (1H, s, O<u>H</u>), 1.98-1.76 (4H, m, H³, H⁷), 1.65 (2H, dt, J = 7.1 Hz, J = 7.1 Hz, H²), 1.22 (2H, tt, J = 6.8 Hz, H⁸); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 200.0, 159.5, 154.6, 135.1, 129.9, 114.5, 93.4, 76.3, 60.6, 55.0, 47.8, 40.9, 30.7, 20.4, 15.2; HRMS (ES⁺) mass calc'd. For C₁₇H₂₁NO₄ 303.1471; found [(M+H)⁺] 304.1541.

N-(4-methoxyphenyl)-*N*-(4-oxobutyl)-6-(triisopropylsilyloxy)hex-2-ynamide (1d)

Triethylamine (171 μ L, 1.23 mmol) and DMAP (6 mg, 0.049 mmol) were added to a solution of 6-hydroxy-*N*-(4-methoxyphenyl)-*N*-(4-oxobutyl)hex-2-ynamide (**25**) (150 mg, 0.49 mmol) in CH₂Cl₂ (6 mL), followed by TIPSCl solution (126 μ L, 0.59 mmol). The resulting mixture was

stirred at room temperature for 48 h and quenched by aqueous NaHCO₃ solution and extracted with CH₂Cl₂ (3 x 15 mL). The combined organic layers were dried over MgSO₄, concentrated in vacuo and purified by flash chromatography on silica gel (CH₂Cl₂:acetone, 95:5) to afford compound **1d** as a colourless oil (170 mg, 75% yield). Rf 0.6 (CH₂Cl₂:acetone, 95:5); λ_{max} (film) / cm⁻¹ 3390, 2962, 2256, 1633, 1394, 1249, 994, 733; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 9.29 (1H, s, CHO), 6.95 (2H, d, J = 8.9 Hz, H⁵), 6.70 (2H, d, J = 8.9 Hz, H⁶), 3.59 (2H, t, J = 7.1 Hz, H¹), 3.38 (2H, t, J = 5.8 Hz, H⁹), 3.30 (3H, S, OC<u>H₃</u>), 2.03 (2H, t, J = 7.1 Hz, H³), 1.89 (2H, t, J = 5.8 Hz, H⁷), 1.59 (2H, dt, J = 7.1 Hz, J = 7.1 Hz, H²), 1.32 (2H, dt, J = 5.8 Hz, H⁸), 1.09-0.95 (21H, m, TIPS); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 199.8, 159.3, 154.3, 135.3, 129.9, 114.4, 92.9, 76.4, 61.6, 54.9, 47.8, 40.9, 31.4, 20.5, 18.2, 15.3, 12.2; HRMS (ES⁺) mass calc'd. For C₂₆H₄₁NO₄Si 459.2805; found [(M+H)⁺] 460.2864.

3-cyclopropyl-N-(4-methoxyphenyl)-N-(4-oxobutyl)propiolamide (1e)

General procedure **2**, 3-cyclopropyl-*N*-(4,4-diethylbutyl)-*N*-(4-methoxyphenyl)propiolamide (**20**) (1 g, 2.78 mmol), 5 h, chromatography on silica gel (petrol ether/EtOAc, 7:3) to afford compound **1e** as yellow oil (732 mg, 92%). Rf 0.18 (pet.-ether/EtOAc, 7:3); λ_{max} (film) / cm⁻¹ 2938, 2838, 2222,

1720, 1626, 1510, 1442, 1395, 1292, 1247, 1180, 1107, 1059, 1030, 938, 890, 836, 814, 732; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 9.26 (1H, s, H⁴), 6.85 (2H, d, *J* = 8.9 Hz, H⁵), 6.63 (2H, d, *J* = 8.9 Hz, H⁶), 3.55 (2H, t, *J* = 7.2 Hz, H¹), 3.24 (3H, s, OC<u>*H*</u>₃), 1.86

(2H, t, J = 7.2 Hz, H³), 1.67 (2 H, tt, J = 7.2 Hz, J = 7.2 Hz, H²), 0.68-0.64 (1H, m, H⁷), 0.29-0.23 (2H, m, C<u>H</u>₂, cycloprop.), 0.16-0.10 (2H, m, C<u>H</u>₂, cycloprop.); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 199.8, 159.3, 154.3, 135.3, 129.9, 114.3, 96.8, 71.5, 54.9, 47.7, 40.9, 20.5, 8.8, 0.00; HRMS (ES⁺) mass calc'd. For C₁₇H₁₉NO₃ 285.1365; found [(M+H)⁺] 286.1432.

N-(4-methoxyphenyl)-N-(3-oxopropyl)-3-phenylpropiolamide (1g)

General procedure **2**, *N*-(3,3-diethoxypropyl)-*N*-(4methoxyphenyl)-3-phenylpropiolamide (**22**) (0.35 g, 092 mmol), 4 h, chromatography on silica gel (CH₂Cl₂:acetone, 0-5%) to afford compound **1g** as a colourless oil (0.28 g, 91% yield); Rf 0.40 (CH₂Cl₂:acetone, 96:4) λ_{max} (film) / cm⁻¹ 2962, 2214, 1720, 1627, 1509, 1392, 1293, 1246, 1027, 835, 757; ¹H

NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 9.33 (1H, s, H³), 7.03 (2H, d, J = 8.8 Hz, H⁴), 6.88 (2H, d, J = 8.8 Hz, H⁵), 6.81-6.62 (5H, m, <u>Ph</u>), 3.88 (2H, t, J = 7.0 Hz, H¹), 3.22 (3H, s, OC<u>*H*</u>₃), 2.17 (2H, m, H²); ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 198.9, 159.6, 154.2, 134.7, 132.6, 130.1, 129.8, 121.1, 114.5, 90.8, 83.8, 54.9, 42.9, 42.3; HRMS (ES⁺) mass calc'd. For C₁₉H₁₇NO₃ 307.1208; found [(M+H)⁺] 308.1287.

7-hydroxy-N-(4-methoxyphenyl)-N-methylhept-2-ynamide (26)

*p*TsOH (12 mg, 0.063 mmol) was added to a solution of *N*-(4-methoxyphenyl)-*N*-methyl-7-(tetrahydro-2*H*-pyran-2-yloxy)hept-2-ynamide (**23**) (400 mg, 1.16 mmol) in MeOH (8 mL) at room temperature. The resulting mixture was stirred for 6 h, quenched with aqueous NaHCO₃solution and extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried over MgSO₄,

concentrated in vacuo and purified by flash chromatography on silica gel (CH₂Cl₂:acetone, 75:25) to afford compound **26** as a colourless oil (290 mg, 96% yield). Rf 0.45 (CH₂Cl₂:acetone, 75:25); λ_{max} (film) / cm⁻¹ 3413, 2937, 2226, 1619, 1510, 1375, 1246, 1169, 1030, 836, 733; ¹H NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 6.90 (2H, d, *J* = 8.9 Hz, H⁵), 6.75 (2H, d, *J* = 8.9 Hz, H⁶), 3.34 (3H, s, OC<u>H₃</u>), 3.31 (2H, t, *J* = 5.2 Hz, H⁴), 3.13 (3H, s, NC<u>H₃</u>), 1.81 (2H, t, *J* = 6.4 Hz, H¹), 1.25-1.12 (4H, m, H², H³); ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 159.3, 154.5, 137.1, 129.1, 114.5, 93.2, 76.7, 62.0, 55.1, 36.3, 31.9, 24.4, 18.7; HRMS (ES⁺) mass calc'd. For C₁₅H₁₉NO₃ 261.1365; found [(M+H)⁺] 262.1436.

N-(4-methoxyphenyl)-*N*-methyl-7-oxohept-2-ynamide (5)

Dess Martin Peridinone (DMP) (424 mg, 1.15 mmol) was added to a solution of 7-hydroxy-N-(4-methoxyphenyl)-N-methylhept-2 ynamide (**26**) (255 mg, 0.98 mmol) in CH₂Cl₂ (12 ml) at 0 °C. The reaction mixture was allowed warm up to room temperature over a period of 1 h and quenched with aqueous NaHCO₃ solution. It was extracted with CH₂Cl₂ (3 x 15 ml), dried over MgSO₄,

concentrated in vacuo and purified by flash chromatography on silica gel (CH₂Cl₂:acetone, 9:1) to afford compound **5** as a colourless oil (250 mg, 99% yield). Rf 0.63 (CH₂Cl₂:acetone, 9:1); λ_{max} (film) / cm⁻¹ 2940, 2225, 1720, 1629, 1509, 1368, 1245, 1155, 1029, 836, 733; ¹H NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 9.17 (1H, s, CHO), 6.85

(2H, d, J = 8.8 Hz, H⁵), 6.66 (2H, d, J = 8.8 Hz, H⁶), 3.34 (3H, s, OC<u>*H*</u>₃), 3.12 (3H, s, NC<u>*H*</u>₃), 1.67 (2H, t, J = 6.7 Hz, H³), 1.58 (2H, t, J = 7.6 Hz, H¹), 1.10 (2H, tt, J = 7.6 Hz, J = 6.7 Hz, H²); ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 199.9, 159.3, 154.0, 137.0, 129.1, 114.5, 91.4, 77.3, 55.1, 42.2, 36.3, 20.3, 18.0; HRMS (ES⁺) mass calc'd. For C₁₅H₁₇NO₃ 259.1208; found [(M+H)⁺] 260.1280.

Even though the ECED process does not require the isolation of the iodocyclohexadienone, we have included the full data for their characterization. This data was obtained from a separate experiment.

4-(3-iodo-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal (2a)

Method A: *N*-(4-methoxyphenyl)-*N*-(4-oxobutyl)-3-phenylprop-2-ynamide (**1a**) (100 mg, 0.311 mmol), CH₂Cl₂ (7 mL), ICl (622 μ L), 30 min, chromatography on silica gel (CH₂Cl₂:acetone, 95:5) to afford compound **2a** as a colourless oil (100 mg, 75% yield); Rf 0.42 (CH₂Cl₂:acetone, 95:5); λ_{max} (film) / cm⁻¹ 3050, 1666,

1694, 1389, 1060, 873, 723; ¹H NMR (400 MHz, C_6D_6) δ_H 9.33 (1H, s, CHO), 7.15-7.00 (5H, m, <u>Ph</u>), 6.02 (2H, d, J = 10.1 Hz, H⁵), 5.53 (2H, d, J = 10.1 Hz, H⁶), 3.00 (2H, t, J = 7.10 Hz, H⁴), 1.87 (2H, t, J = 7.1 Hz, H²), 1.59 (2H, dt, J = 7.10 Hz, J = 7.10 Hz, H³); ¹³C NMR (100 MHz, C_6D_6) δ_C 199.9, 183.3, 167.7, 158.6, 144.1, 133.1, 132.9, 130.2, 128.9, 128.3, 128.2, 127.9, 99.5, 70.9, 41.6, 41.4, 22.8; HRMS (ES⁺) mass calc'd. For C₁₉H₁₆INO₃ 433.0175; found [(M+H)⁺] 434.0265.

4-(3-iodo-2,8-dioxo-4-pentyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal (2c)

Method A: *N*-(4-methoxyphenyl)-*N*-(4-oxobutyl)oct-2ynamide (**1c**) (100 mg, 0.32 mmol), CH₂Cl₂ (10 mL), ICl (640 μ L), 30 min, chromatography on silica gel (CH₂Cl₂:acetone, 95:5) to afford compound **2c** as a colourless oil (110 mg, 80% yield). Rf 0.40 (CH₂Cl₂:acetone, 95:5); λ_{max} (film) / cm⁻¹ 2929, 1664, 1388,

1059, 858, 732; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 9.25 (1H, s, CHO), 6.07 (2H, d, J = 8.0 Hz, H⁵), 5.35 (2H, d, J = 8.4 Hz, H⁶), 2.89 (2H, t, J = 5.6 Hz, H⁴), 1.89-1.77 (4H, m, H², H³), 1.52-1.47 (2H, m, H¹⁰), 1.28-1.21 (2H, m, H⁷), 1.17-1.11 (2H, m, H⁸), 1.07-1.01 (2H, m, H⁹), 0.82 (3H, t, J = 5.6 Hz, H¹¹); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 199.7, 183.3, 167.5, 159.7, 144.5, 132.6, 97.2, 70.6, 41.2, 40.9, 31.8, 29.2, 27.9, 22.5, 22.3, 13.9; HRMS (ES⁺) mass calc'd. For C₁₈H₂₂IN0₃ 427.0644; found [(M+H)⁺] 428.0722.

4-(3-iodo-2,8-dioxo-4-(3-((triisopropylsilyl)oxy)propyl)-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal (2d)

Method A: *N*-(4-methoxyphenyl)-*N*-(4-oxobutyl)-6 (triisopropylsilyloxy)-hex-2-ynamide (1d) (40 mg, 0.087 mmol), CH₂Cl₂ (2 mL), ICl (170 μ L), chromatography on silica gel (CH₂Cl₂:acetone, 95:5) to afford compound 2d as a colourless oil (39 mg, 78% yield). Rf 0.45 (CH₂Cl₂:acetone, 95:5); λ_{max} (film) / cm⁻¹, ¹H NMR (400

MHz, C₆D₆) $\delta_{\rm H}$ (NA),¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ (NA) ; HRMS (ES⁺) mass calc'd. For C₂₅H₃₈INO₄Si 571.1615; found [(M+H)⁺] 572.1686.

4-(3-iodo-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal (2g)

Method A: *N*-(4-methoxyphenyl)-*N*-(4-oxobutyl)-3-phenylprop-2ynamide (**1g**) (20 mg, 0.065 mmol), CH₂Cl₂ (3 mL), ICl (65 μ L), 30 min, chromatography on silica gel (CH₂Cl₂:acetone, 95:5) to afford compound **2g** as a colourless oil (0.025 g, 95% yield); Rf 0.40 (CH₂Cl₂:acetone, 95:5); λ_{max} (film) / cm⁻¹ 2971, 1693, 1389, 1059,

876, 724; ¹H NMR (400 MHz, CD₃Cl₃) $\delta_{\rm H}$ 9.70 (1H, s, H¹), 7.15-7.39-7.24 (5H, m, <u>Ph</u>), 6.50 (2H, d, J = 10.1 Hz, H⁴), 6.39 (2H, d, J = 10.1 Hz, H⁵), 3.62 (2H, t, J = 7.0 Hz, H³), 2.79 (2H, t, J = 7.1 Hz, H²), ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 199.3, 182.1, 165.3, 155.2, 140.1, 132.3, 130.1, 128.2, 128.1, 127.3, 127.0, 125.9, 98.1, 70.3, 43.6, 40.4; HRMS (ES⁺) mass calc'd. For C₁₈H₁₄INO₃ 419.0018; found [(M+H)⁺] 420.0097.

4-(3-iodo-1-methyl-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-4-yl)butanal (27)

Method A: *N*-(4-methoxyphenyl)-*N*-methyl-7-oxohept-2-ynamide (5) (50 mg, 0.193 mmol), CH₂Cl₂ (3 mL), ICl (390 μ L), chromatography on silica gel (CH₂Cl₂:acetone, 9:1) to afford compound **27** as a colourless oil (0.065 g, 91% yield). Rf 0.42 (CH₂Cl₂:acetone, 9:1); λ_{max} (film) / cm⁻¹ 2956, 2300, 1690, 1367, 1265, 1063, 1005, 856, 733; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 9.19 (1H,

s, CHO), 6.06 (2H, d, J = 10.1 Hz, H⁵), 5.06 (2H, d, J = 10.1 Hz, H⁶), 2.40 (3H, s, NC<u>H₃</u>), 1.70-1.62 (2H, m, H³), 1.59 (2H, t, J = 7.2 Hz, H¹), 1.39-1.34 (2H, m, H²);¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 199.1, 183.0, 166.6, 158.6, 144.0, 133.0, 98.2, 69.9, 42.9, 28.3, 26.3, 20.6; HRMS (ES⁺) mass calc'd. For C₁₄H₁₄INO₃ 371.0018; found [(M+H)⁺] 372.0087.

4-(4-bromo-3-iodo-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal (28)

Method B: 3-bromo-*N*-(4,4-diethoxybutyl)-*N*-(4-methoxyphenyl) propiolamide (**9**) (150 mg, 0.376 mmol), CH₂Cl₂ (20 mL), ICl (753 μ L), 30 min, chromatography on silica gel (CH₂Cl₂:acetone, 0-5%) to afford compound **28** colourless oil (160 mg, 97% yield); Rf 0.30 (CH₂Cl₂:MeOH, 95:5); λ_{max} (film) / cm⁻¹ 2944, 2726, 1707, 1510, 1669, 1632, 1388, 1141, 1061, 870, 745; ¹H NMR

(500 MHz, C_6D_6) δ_H 9.19 (1H, CHO), 6.08 (2H, d, J = 10.1 Hz, H⁵), 5.08 (2H, d, J = 10.1 Hz, H⁶), 2.89 (2H, t, J = 7.0 Hz, H⁴), 1.98 (2H, t, J = 7.0 Hz, H²) 1.53 (2H, dt, J = 7.0 Hz, J = 7.0 Hz, H³); ¹³C NMR (125 MHz, C_6D_6) δ_C 199.5, 182.9, 177.3, 164.2, 142.6, 133.6, 124.3, 69.0, 41.60, 30.7, 24.7; HRMS (ES⁺) mass calc'd. For $C_{13}H_{11}BrINO_3$ 434.8967; found [(M+H)⁺] 435.9037.

2-iodo-3,9-dioxo-1-phenyl-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-7-carbaldehyde (4a)

MethodB:N-(4-methoxyphenyl)-N-(4-oxobutyl)-3-phenylpropiolamide (1a) (500 mg, 1.55 mmol), CH2Cl2 (30 mL), ICl(3.1 mL) form 4-(3-Iodo-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal 2a; then catalyst (75.13 mg, 0.23 mmol),

benzoic acid (28.08 mg, 0.20 mmol), 48 h at 0 °C, chromatography on silica gel (CH₂Cl₂:acetone, 0-5%) gives compound **4a** as a white solid (452 mg, 90% yield); Rf 0.55 (CH₂Cl₂:MeOH, 95:5); MP: 232-234 °C; λ_{max} (film) / cm⁻¹ 3056, 2920, 2729, 1624, 1679, 1399, 1298, 1031, 733; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 8.80 (1H, d, J = 1.6 Hz, CHO), 6.99-6.94 (3H, m, Ph), 6.86-6.83 (2H, m, Ph), 5.85 (1H, d, J = 10.1 Hz, H⁷), 5.12 (1H, dd, J = 10.1 Hz, J = 1.8 Hz, H⁶), 4.19 (1H, ddd, J = 13.2 Hz, J = 4.8 Hz, J = 1.9 Hz, H^{1b}), 2.13 (1H, app. dt, J = 13.2 Hz, J = 2.9 Hz, H^{1a}), 2.08-2.00 (2H, m, H^{5a}, H⁴), 1.75 (1H, ddt, J = 12.9 Hz, J = 3.7 Hz, J = 1.5 Hz, H³), 1.65 (1H, dd, J = 17.3 Hz, J = 13.2 Hz, H^{5b}), 0.95 (1H, app. dq, J = 13.1 Hz, J = 3.1 Hz, H^{2b}), 0.60 (1H, app. dq, J = 12.3 Hz, J = 4.7 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 199.7, 194.6, 165.1, 163.0, 144.6, 135.3, 134.4, 130.2, 129.6, 128.9, 100.6, 69.1, 49.7, 39.5, 38.9, 37.5, 25.9; HRMS (ES⁺) mass calc'd. For C₁₉H₁₆INO₃ 433.0175; found [(M+H)⁺] 434.0273. [α]_D²⁵ = + 168.00° (C = 0.67 mg/ml), CHCl₃ for 92% ee. HPLC:DAICEL AD Chiralpak, 8:2 Hexane/isopropanol, flow 1 mL/min, retention time: major 22.78 min, minor enantiomer 25.67 min. CCDC number: pending. CIF file included.

1-(3-chlorophenyl)-2-iodo-3,9-dioxo-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-7-carbaldehyde (4b)

Method B: 3-(3-chlorophenyl)-*N*-(4,4-diethoxybutyl)-*N*-(4methoxyphenyl)propiolamide (17) (100 mg, 0.23 mmol), CH₂Cl₂ (15 mL), ICl (465 μ L) form 4-(3-Iodo-2,8-dioxo-4-phenyl-1azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal; then catalyst (15 mg, 0.046 mmol), benzoic acid (5.61 mg, 0.046 mmol), CH₂Cl₂ (40 mL), 48 h at 0°C, chromatography on silica gel (CH₂Cl₂:acetone,

0-5%) gives aldehyde **4b** as a white solid (85 mg, 80%). MP: 188-190 °C. Rf 0.12 (pet.-ether/EtOAc 6:4); λ_{max} (film) / cm⁻¹ 2921, 1682, 1586, 1562, 1472, 1451, 1400, 1299, 1270, 1214, 1080, 1032, 934, 901, 782, 735, 719, 678; ¹H NMR (400 MHz, C₆D₆) δ_{H} 8.90 (1H, d, J = 1.6 Hz, CHO), 7.17 (1H, t, J = 1.6 Hz, H⁹), 7.10 (1H, ddd, J = 8.0 Hz, J = 2.3 Hz, J = 1.2 Hz , H¹⁰), 6.82 (1H, dd, J = 7.9 Hz, J = 7.8 Hz, H¹¹), 6.76 (1H, dt, J = 7.8 Hz, J = 1.2 Hz, H¹²), 5.95 (1H, d, J = 10.0 Hz, H^7), 5.16 (1H, dd, J = 10.0 Hz, J = 2.0 Hz, H⁶), 4.32 (1H, ddd, J = 13.4 Hz, J = 4.7 Hz, J = 1.9 Hz, H^{1b}), 2.24 (1H, app. dt, 13.1 Hz, J = 3.1 Hz, H^{1a}), 2.20 (1H, app. d, J = 17.5 Hz, H^{5a}), 2.14-2.08 (1H, m, H⁴), 1.87 (1H, ddt, J = 12.2 Hz, J = 3.8 Hz, J = 1.9 Hz, H³), 1.78 (1H, dd, J = 17.5 Hz, J = 5.3 Hz, H^{5b}), 1.09 (1H, app. dq, J = 13.1 Hz, J = 3.1 Hz, H^{2b}), 0.76 (1H, app. dq, J = 12.9 Hz, J = 4.7 Hz, H^{2a}); ¹³C NMR (100 MHz, C₆D₆) δ_{C} 199.6, 194.0, 164.3, 160.7, 144.2, 136.7, 135.2, 134.1, 130.0, 130.7, 128.3, 126.3, 77.9, 68.8,

49.2, 39.0, 38.5, 37.1, 25.6; HRMS (ES⁺) mass calc'd. For C₁₉H₁₅ClINO₃ 466.9785; found $[(M+H)^+]$ 467.9776. $[\alpha]_D^{25} = -113.20^\circ$ (C = 1.27 mg/ml), CHCl₃ for 92% ee.

2-iodo-3,9-dioxo-1-pentyl-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-7-carbaldehyde (4c)

Method A: 4-(3-Iodo-2,8-dioxo-4-pentyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal (2c) (10 mg, 0.023 mmol), catalyst (1.49 mg, 0.0046 mmol), benzoic acid (0.561 mg, 0.046 mmol), 12 h at -20 °C, chromatography on silica gel (CH₂Cl₂:acetone, 9:1) gives ketone 4c as a colourless oil (9 mg, 90% yield). Rf 0.48 (CH₂Cl₂:acetone, 9:1); λ_{max} (film) / cm⁻¹ 2928, 1676, 1399, 1031,

746; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 8.7 (1H, d, J = 1.7 Hz, CHO), 5.82 (1H, d, J = 10.2 Hz, H⁷), 4.92 (1H, dd, J = 10.2 Hz, J = 2.0 Hz, H⁶), 4.11 (1H, ddd, J = 13.3 Hz, J = 4.7 Hz, J = 1.9 Hz, H^{1b}), 2.46-2.41 (2H, m, H^{1a}, H^{5a}), 2.08-2.00 (2H, m, H⁹), 1.88-1.80 (1H, m, H⁴), 1.70 (1H, ddt, J = 11.6 Hz, J = 3.8 Hz, J = 1.7 Hz, H³), 1.48-1.41 (1H, m, H^{5b}), 1.25-1.12 (6H, m, H¹⁰, H¹², H¹¹), 0.92-0.79 (4H, m, H^{2b}, H¹³), 0.45 (1H, app. dq, J = 12.9 Hz, J = 4.4 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 199.0, 193.9, 164.4, 163.0, 146.2, 132.7, 98.7, 67.7, 49.7, 39.2, 38.3, 36.6, 32.0, 30.9, 27.8, 25.3, 22.2, 14.0; HRMS (ES⁺) mass calc'd. For C₁₈H₂₂INO₃ 427.0644; found [(M+H)⁺] 428.0708; [α]_D²⁵ = + 130.00° (C = 1 mg/mL), CHCl₃ for 90% ee; HPLC:DAICEL AD Chiralpak, 8:2 Hexane/isopropanol, flow 1 mL/min, retention time: major enantiomer 11.28 min, minor enantiomer 12.93 min.

2-iodo-3,9-dioxo-1-(3-((triisopropylsilyl)oxy)propyl)-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-7-carbaldehyde (4d)

Method A: 4-(3-iodo-2,8-dioxo-4-(3-(triisopropylsilyloxy)propyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal (2d) (10 mg, 0.017 mmol), catalyst (1.5 mg, 0.034 mmol) and benzoic acid (0.6 mg, 0.034 mmol), 24 h at -20 °C, chromatography on silica gel (CH₂Cl₂:acetone, 9:1)

gives aldehyde **4d** as a colourless oil (8 mg, 80% yield). Rf 0.40 (CH₂Cl₂:acetone, 9:1); λ_{max} (film) / cm⁻¹ 2941, 1688, 1399, 1103, 882, 747; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 8.76 (1H, d, J = 1.7 Hz, CHO), 5.89 (1H, d, J = 10.2 Hz, H⁷), 4.97 (1H, dd, J = 10.2 Hz, J = 2.0 Hz, H⁶), 4.14 (1H, ddd, J = 13.3 Hz, J = 4.7 Hz, J = 1.9 Hz, H^{1b}), 3.55 (1H, dt, J = 9.9 Hz, J = 4.8 Hz, H^{11a}), 3.45 (1H, ddd, J = 9.9 Hz, J = 8.5.1 Hz, J = 4.9 Hz, H^{1b}), 2.91 (1H, dd, J = 17.8 Hz, J = 5.4 Hz, H^{5b}), 2.53 (1H, dt, J = 13.2 Hz, J = 2.9 Hz, H^{5a}), 2.61-2.49 (1H, m, H^{9a}), 2.47-2.38 (1H, m, H^{9b}), 2.04 (1H, app. dt, J = 13.6 Hz, J = 3.0 Hz, H^{1a}), 2.0-1.92 (1H, m, H⁴), 1.86-1.75 (1H, m, H^{10a}), 1.78-1.70 (1H, m, H³), 1.49 (1H, ddt, J = 12.8 Hz, J = 8.5 Hz, J = 4.2 Hz, H^{10b}), 1.10-0.87 (21H, m, TIPS), 1.20 (1H, app. dq, J = 13.0 Hz, J = 2.9 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 199.0, 194.0, 164.4, 162.8, 145.8, 132.9, 99.0, 67.9, 62.8, 49.7, 39.4, 38.3, 36.6, 31.1, 27.8, 25.4, 18.2, 12.2; HRMS (ES⁺) mass calc'd. For C₂₅H₃₈INO₄Si 571.1615; found [(M+H)⁺] 572.1697; [α]_D²⁵ = -45.45° (C = 0.66 mg/mL), CHCl₃ for 89% ee; HPLC:DAICEL AD-H Chiralpak, 9:1 Hexane/isopropanol, flow 1 mL/min, retention time: major enantiomer 27.29 min.

1-cyclopropyl-2-iodo-3,9-dioxo-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-7-carbaldehyde (4e)

Method A: 3-cyclopropyl-*N*-(4-methoxyphenyl)-*N*-(4-oxobutyl)propiolamide (1e) (100 mg, 0.35 mmol), CH₂Cl₂ (15 mL), ICl (700 μ L) form 4-(3-Iodo-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal; then catalyst (22.7 mg, 0.07 mmol), benzoic acid (8.54 mg, 0.07 mmol), 48 h at 0°C,

c billing of thinking benzotic acid (8.34 mig, 0.07 minor), 48 m at 0 °C, chromatography on silica gel (CH₂Cl₂:acetone, 0-5%) gives aldehyde **4e** as a white solid (108.8 mg, 78% yield); MP: 168-170 °C; Rf 0.46 (CH₂Cl₂:MeOH, 95:5); λ_{max} (film) / cm⁻¹ 2924, 2726, 1720, 1674, 1599, 1404, 1299, 1211, 1028, 955, 867, 732, 698; ¹H NMR (400 MHz, C₆D₆) $\delta_{\rm H}$ 8.75 (1H, d, J = 1.6 Hz, CHO), 5.81 (1H, d, J = 10.2 Hz, H⁷), 4.96 (1H, dd, J = 10.2 Hz, J = 1.9 Hz, H⁶), 4.08 (1H, ddd, J = 13.4 Hz, J = 4.7 Hz, J = 1.9 Hz, H^{1b}), 2.82 (1H, dd, J = 17.8 Hz, J = 5.2 Hz, H^{5b}), 2.41 (1H, dt, J = 17.8 Hz, J = 0.9 Hz, H^{5a}), 2.00 (1H, app. dt, J = 13.4 Hz, J = 1.9 Hz, H^{1a}), 1.90-1.80 (1H, m, H⁴), 1.78-1.72 (1H, ddt, J = 13.7 Hz, J = 3.6 Hz, J = 1.6 Hz, H³) 1.32-1.26 (1H, m, H⁹), 0.91 (1H, app. dq, J = 12.9 Hz, J = 3.0 Hz, H^{2b}), 0.79-0.57 (2H, m, Cycloprop, H¹⁰), 0.53 (1H, app. dq, J = 12.9 Hz, J = 4.8 Hz, H^{2a}), 0.40-0.27 (2H, m, Cycloprop, H¹⁰); ¹³C NMR (100 MHz, C₆D₆) $\delta_{\rm C}$ 199.4, 194.7, 164.9, 160.9, 146.6, 132.9, 92.9, 68.7, 49.9, 39.2, 38.9, 36.8, 25.3, 12.2, 8.6, 7.4; HRMS (ES⁺) mass cal'd. For C₁₆H₁₆INO₃ 397.0175; found [(M+H)⁺] 398.0247. [α]_D²⁵ = - 69.70° (C = 1.15 mg/ml), CHCl₃ for 96% ee.

2-iodo-3,9-dioxo-1-(thiophen-2-yl)-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-7-carbaldehyde (4f)

Method B: *N*-(4,4-diethoxybutyl)-*N*-(4-methoxyphenyl)-3-(thiophen-2-yl)propiolamide (**21**) (100 mg, 0.25 mmol), CH₂Cl₂ (10 mL), ICl (500 μ L) form 4-(3-iodo-2,8-dioxo-4-(thiophen-2-yl)-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal; then catalyst (16.27 mg, 0.05 mmol), benzoic acid (6.10 mg, 0.05 mmol), 48 h

at -20°C, chromatography on silica gel (CH₂Cl₂:acetone, 0-10%) gives aldehyde **4f** as a white solid (92.7 mg, 84% yield); MP: 215-217 °C; Rf 0.46 (CH₂Cl₂:MeOH, 95:5); λ_{max} (film) / cm⁻¹ 2971, 2908, 1720, 1683, 1400, 1298, 1067, 748; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 8.73 (1H, d, J = 1.6 Hz, CHO), 6.79 (1H, dd, J = 2.9 Hz, J = 1.2 Hz, H¹¹), 6.72 (1H, dd, J = 4.9 Hz, J = 2.9 Hz, H¹⁰), 6.67 (1H, dd, J = 4.9 Hz, J = 1.2 Hz, H⁹), 5.86 (1H, d, J = 10.1 Hz, H⁷), 5.09 (1H, dd, J = 10.1 Hz, J = 2.0 Hz, H⁶), 4.18 (1H, ddd, J = 13.1 Hz, J = 4.8 Hz, J = 1.9 Hz, H^{1b}), 2.12-2.06 (2H, m, H^{1a}, H^{5a}), 1.95-1.85 (1H, m, H⁴), 1.75-1.68 (2H, m, H³, H^{5b}), 0.90 (1H, app. dq, J = 13.4 Hz, J = 3.1Hz, H^{2b}), 0.56 (1H, app. dq, J = 13.1 Hz, J = 4.8 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 198.9, 193.9, 164.3, 157.0, 144.0, 134.1, 133.9, 127.1, 126.6, 125.1, 99.1, 68.1, 49.2, 39.3, 38.1, 36.8, 25.3; HRMS (ES⁺) mass cal'd. For C₁₇H₁₄INO₃S 438.9739; found [(M+H)⁺] 439.9811. [α]_D²⁵ = + 72.40° (C = 1.32 mg/ml), CHCl₃ for 95% ee.

1-bromo-2-iodo-3,9-dioxo-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-7-carbaldehyde (10)

Method B: 3-bromo-N-(4,4-diethoxybutyl)-N-(4-methoxyphenyl)propiolamide (9) (150 mg, 0.376 mmol), CH₂Cl₂ (20 mL), ICl (753 μL) form 4-(4-bromo-3-iodo-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)butanal; then catalyst (24.48 mg, 0.075 mmol), benzoic acid (9.18 mg, 0.075 mmol), 48 h at 0 ^oC, chromatography on silica gel (CH₂Cl₂:acetone, 0-5%) gives compound **10** as a white solid (124.3 mg, 76% yield); Rf 0.44 (CH₂Cl₂:MeOH, 95:5); MP: 226-228 °C; λ_{max} (film) / cm⁻¹ 2925, 2124, 1724, 1679, 1572, 1398, 1299, 1040, 741; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 8.69 (1H, s, CHO), 5.85 (1H, d, *J* = 10.5 Hz, H⁷), 4.80 (1H, dd, *J* = 10.5 Hz, J = 2.0 Hz, H⁶), 4.04 (1H, ddd, *J* = 13.3 Hz, *J* = 4.7 Hz, *J* = 1.9 Hz, H^{1b}), 3.03 (1H, dd, *J* = 18.1 Hz, *J* = 5.4 Hz, H^{5b}), 2.31 (1H, dt, *J* = 18.1 Hz, *J* = 1.5 Hz, H^{5a}), 1.90 (1H, app. dt, *J* = 13.3 Hz, *J* = 3.2 Hz, H^{1a}), 1.64 (1H, ddt, *J* = 12.4 Hz, *J* = 5.6 Hz, *J* = 1.9 Hz, H³), 1.60-1.53 (1H, m, H⁴), 0.79 (1H, app. dq, *J* = 13.3 Hz, *J* = 3.1 Hz, H^{2b}), 0.43 (1H, app. dq, *J* = 13.3 Hz, *J* = 4.7 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 198.7, 193.6, 163.3, 146.9, 143.6, 133.8, 103.6, 68.5, 49.3, 38.9, 38.5, 37.0, 25.0; HRMS (ES⁺) mass calc'd. For C₁₃H₁₁BrINO₃ 434.8967; found [(M+H)⁺] 435.9041. [α]_D²⁵ = - 128.40° (C = 1.65 mg/ml), CHCl₃ for 90% ee.

Ethyl 2-iodo-3,9-dioxo-1-phenyl-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinolin-7-yl)acrylate (7b)

General procedure 5, (carbethoxymethylene)triphenylphosphine (358.8 mg, 1.03 mmol) was added to the solution of 2-iodo-3,9-dioxo-1-phenyl-5,6,7,7a,8,9-hexahydro-3H-pyrrolo[2,1-j]quinoline-7carbaldehyde (4a) (300 mg, 0.69 mmol) in CH₂Cl₂ (30 mL) at -

78 °C. The reaction mixture was stirred for 12h, slowly warming to room temperature. The reaction was quenched with water and extracted with CH₂Cl₂ (2 x 15 mL), the combined organic layers were dried over MgSO₄ and concentrated in vacuo. Chromatography on silica gel (CH₂Cl₂:acetone, 0-2%) to afford compound 7b as a white solid (289 mg, 83% yield). Rf 0.54 (CH₂Cl₂:MeOH, 95:5); MP: 234-236 °C. λ_{max} (film) / cm⁻¹ 2979, 2874, 1685, 1654, 1395, 1297, 1187, 1139, 1046, 986, 940, 884, 749, 749, 703; ¹H NMR δ_H (500 MHz, C₆D₆) δ_H 7.05-6.93 (3H, m, Ph), 6.92-6.87 (2H, m, <u>Ph</u>), 6.31 (1H, dd, J = 15.6, J = 10.1 Hz, H⁸), 5.81 (1H, d, J = 10.1 Hz, H^{7}), 5.64 (1H, d, J = 15.6 Hz, H^{9}), 5.10 (1H, dd, J = 10.1 Hz, J = 1.9 Hz, H^{6}), 4.17 (1H, ddd, J = 13.2 Hz, J = 5.1 Hz, J = 2.0 Hz, H^{1b}), 4.08-3.88 (2H, m, C<u>H</u>₂CH₃), 2.16 (1H, app. dt, J = 13.2 Hz, J = 3.1 Hz, H^{1a}), 1.93 (1H, dt, J = 17.1 Hz, J = 1.8 Hz, H^{5a}), 1.75 (1H, ddt, J = 17.1 Hz, J = 11.5 Hz, J = 3.1 Hz, H³), 1.47 (1H, dd, J = 17.1 Hz, J $= 5.1 \text{ Hz}, \text{H}^{5b}$, 1.36-1.23 (1H, m, H⁴), 0.94 (3H, t, $J = 7.1 \text{ Hz}, \text{CH}_2\text{CH}_3$), 0.87 (2H, app. dq, J = 12.9 Hz, J = 2.1 Hz, H^{2b}), 0.72 (1H, app. dq, J = 12.9 Hz, J = 5.1 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) δ_{C} 193.7, 165.2, 164.1, 161.8, 147.9, 143.8, 134.8, 133.5, 129.3, 128.7, 127.9, 124.2, 100.4, 68.8, 60.1, 43.0, 40.5, 37.7, 36.9, 30.5, 13.9; HRMS (ES⁺) mass calc'd. For $C_{23}H_{22}INO_4$ 503.0594; found $[M+1]^+$ 504.0675. $[\alpha]_D^{25} = +38.40^\circ (C = 1.65 \text{ mg/ml}), CHCl_3 \text{ for } 92\% \text{ ee.}$

Ethyl 3-(1-(3-chlorophenyl)-2-iodo-3,9-dioxo-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[1,2-*j*]quinolin-7-yl)acrylate (29)

General procedure **5**, 1-(3-chlorophenyl)-2-iodo-3,9dioxo-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[1,2-*j*]quinoline-7-carbaldehyde (**4b**) (40 mg, 0.085 mmol) in dry CH₂Cl₂ (12 mL), (carbethoxymethylene)triphenylphosphorane (44.50 mg, 0.127 mmol) was added at -78 °C,

chromatography on silica gel (pet.-ether/EtOAc, 6:4) afforded 29 as a white solid. (28 mg, 61% yield). Rf 0.33 (pet.-ether/EtOAc, 6:4); MP: 182-184 °C; λ_{max} (film) / cm⁻¹ 2922, 1683, 1586, 1563, 1471, 1396, 1323, 1297, 1270, 1233, 1182, 1141, 1097, 1032, 988, 947, 864, 782, 751, 719; ¹H NMR (500 MHz, C₆D₆) δ_H 7.11 (1H, s, H¹⁰), 6.98 (1H, ddd, J = 7.8 Hz, J = 2.1 Hz, J = 1.4 Hz, H¹¹), 6.78-6.61 (2H, m, H¹², H¹³), 6.38 (1H, dd, J = 15.6 Hz, J = 9.4 Hz, H⁸), 5.80 (1H, d, J = 10.1 Hz, H⁷), 5.68 (1H, d, $J = 15.6 \text{ Hz}, \text{H}^9$, 5.05 (1H, dd, $J = 10.1 \text{ Hz}, J = 2.1 \text{ Hz}, \text{H}^6$), 4.18 (1H, ddd, $J = 13.4 \text{ Hz}, J = 4.6 \text{ Hz}, J = 1.8 \text{ Hz}, \text{H}^{1b}$, 4.07-3.94 (2H, m, CH₂CH₃), 2.16 (1H, dt, $J = 13.1 \text{ Hz}, J = 3.1 \text{ Hz}, H^{1a}$, 1.94 (1H, app. d, $J = 17.2 \text{ Hz}, H^{5a}$), 1.75 (1H, ddt, J = 17.2 Hz) 15.4 Hz, J = 11.7 Hz, J = 3.9 Hz, H³), 1.46 (1H, dd, J = 17.3 Hz, J = 5.1 Hz, H^{5b}), 1.27-1.21 (1H, m, H⁴), 0.99 (3H, t, J = 7.1 Hz, CH_2CH_3) 0.89 (1H, app. dq, $J = 13.4 \text{ Hz}, J = 1.9 \text{ Hz}, \text{H}^{2b}$, 0.78 (1H, app. dq, $J = 11.7 \text{ Hz}, J = 5.7 \text{ Hz}, \text{H}^{2a}$); ¹³C NMR (125 MHz, C₆D₆) δ_C 193.6, 165.4, 164.0, 160.2, 147.8, 143.7, 136.7, 135.0, 133.9, 130.3, 129.7, 125.9, 124.5, 101.6, 69.0, 60.4, 53.3, 43.1, 40.7, 37.9, 37.2, 30.7, 14.2; HRMS (ES⁺) mass calc'd. For $C_{23}H_{21}CIINO_4$ 537.0204; found $[(M+H)^+]$ 538.0276; $[\alpha]_D^{25} = +102.65^\circ$ (C = 0.82 mg/ml), CHCl₃ for 92% ee; HPLC:DAICEL AD Chiralpak, 8:2 Hexane/isopropanol, flow 1 ml/min, retention time: major enantiomer 11.75 min, minor enantiomer 15.84 min.

(*E*)-ethyl 3-(1-cyclopropyl-2-iodo-3,9-dioxo-5,6,7,7a,8,9,-hexahydro-3*H*-pyrrolo[1,2-*j*]quinolin-7-yl)acrylate (30)

General procedure **5**, 1-cyclopropyl-2-iodo-3,9dioxo-5,6,7,7a,8,9-hexahydro-3H-pyrrolo[1,2-*j*]quinoline-7-carbaldehyde (**4e**) (1.00 eq.) in dry CH₂Cl₂ (15 mL), (Carbethoxy-methylene)triphenylphosphorane (176 mg, 0.504 mmol) was added at -78 °C, 14 h, chromatography

on silica (pet.-ether/EtOAc, 6:4) to afford 30 as a white solid (92.6 mg, 59% over 3 steps). Rf 0.32 (pet.-ether/EtOAc, 6:4); Mp: 222-226 °C; λ_{max} (film) / cm⁻¹ 2981, 1676, 1600, 1450, 1403, 1369, 1323, 1299, 1269, 1254, 1233, 1183, 1146, 1054, 1029, 1005, 974, 929, 877, 825, 773, 750, 733; ¹H NMR (500 MHz, CDCl₃) δ_H 6.54 (1H, dd, J = 16.5 Hz, J = 9.5 Hz, H⁸), 6.35 (1H, d, J = 10.0 Hz, H⁷), 6.24 (1H, dd, $J = 10.0 \text{ Hz}, J = 2.0 \text{ Hz}, \text{H}^{6}$, 5.85 (1H, d, $J = 16.5 \text{ Hz}, \text{H}^{9}$), 4.38 (1H, dd, J = 13.5 Hz, J = 4.6 Hz, H^{1b}), 4.17-4.08 (2H, m, C<u>H</u>₂CH₃), 3.24 (1H, dd, J = 17.8 Hz, J = 5.5 Hz, H^{5b}), 2.89 (1H, app. dt, J = 13.3 Hz, $\overline{J} = 2.9$ Hz, H^{1a}), 2.64 (1H, app. d, J = 17.7 Hz, H^{5a}), 2.44 (1H, ddt, $J = 15.3 \text{ Hz}, J = 11.8 \text{ Hz}, J = 3.8 \text{ Hz}, H^{3}$), 2.09-2.01 (1H, m, H⁴), 1.70-1.62 (2H, m, H^{2b}, cycloprop.), 1.47-1.32 (2H, m, H^{2a}, cycloprop.), 1.26 (3H, t, J = 7.0 Hz, CH₂CH₃), 1.14-1.05 (2H, m, cycloprop.), 0.96-0.89 (1H, m, cycloprop.); ¹³C NMR (100 MHz, CDCl₃) δ_C 196.3, 166.1, 166.0, 161.7, 147.9, 147.4, 133.7, 125.1, 91.9, 70.3, 60.9, 44.1, 42.4, 38.9, 38.0, 31.5, 14.5, 12.6, 9.3, 8.1; HRMS (ES⁺) mass calc'd. For C₂₀H₂₂INO₄ 467.0594; found $[(M+H)^+]$ 468.0669. $[\alpha]_D^{25} = +27.77^\circ$ (C = 1.77 mg/ml), CHCl₃ for 96% ee; HPLC:DAICEL AD Chiralpak, 8:2 Hexane/isopropanol, flow 1 ml/min, retention time: major enantiomer 14.46 min, minor enantiomer 18.57 min.

Ethyl 3-(2-iodo-3,8-dioxo-1-phenyl-3,5,6,6a,7,8-hexahydropyrrolo[2,1-i]indol-6-yl)acrylate (31)

Method A: Catalyst (3b) (0.0024 g, 0.007 mmol) and benzoic acid (0.007 mmol) was added to the solution of 3-

(3-iodo-2,8-dioxo-4-phenyl-1-azaspiro[4.5]deca-3,6,9-trien-1-yl)propanal (2g) (0.015 g, 0.036 mmol) in CH₂Cl₂ at -20 °C. The resulting mixture was stirred for 1.5 h at -20 °C, quenched by water and extracted with CH₂Cl₂ (2 x 7 ml). The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and dissolved in CH₂Cl₂ (1.5 ml). After cooling to -78 °C, (carbethoxymethylene)-triphenylphosphine (0.018 g, 0.052 mmol) was added. The reaction mixture was stirred for 12 h, slowly warming to room temperature. The reaction was guenched with water and extracted with CH₂Cl₂ (2 x 7 ml), the combined organic layers were dried over MgSO₄, concentrated under reduced pressure. Chromatography on silica gel (CH₂Cl₂:acetone, 95:5) afforded compound 31 as a colourless oil (0. 0.017g, 97% yield). Rf 0.40 (CH2Cl2:acetone, 95:5); λ_{max} (film) / cm⁻¹ 3675, 2972, 1709, 1262, 1066, 762; ¹H NMR δ_H (500 MHz, C₆D₆) δ_H 6.99-6.93 (3H, m, Ph), 6.91-6.85 (2H, m, Ph), 6.41 $(1H, dd, J = 15.5, J = 9.1 Hz, H^7)$, 5.69 $(1H, d, J = 10.1 Hz, H^6)$, 5.52 $(1H, dd, J = 10.1 Hz, H^6)$ 10.1 Hz, J = 2.0 Hz, H⁵), 5.46 (1H, d, J = 15.5 Hz, H⁸), 4.05-3.96 (2H, m, CH₂CH₃), 4.17 (1H, dd, J = 11.6 Hz, J = 8.8 Hz, J = 2.0 Hz, H^{1b}), 2.16 (1H, dd, J = 11.6 Hz, J =8.8 Hz, H^{1a}), 2.43 (1H, ddt, J = 17.8 Hz, J = 8.8 Hz, J = 2.0 Hz, H^2), 1.87 (1H, dt, J =17.6 Hz, J = 1.7 Hz, H^{4a}), 1.47 (1H, dd, J = 17.6 Hz, J = 5.5 Hz, H^{4b}), 1.46-1.31 (1H, m, H³), 0.99 (3H, t, J = 7.1 Hz, CH₂C<u>H₃</u>); ¹³C NMR (125 MHz, C₆D₆) δ_{C} 193.1, 170.3, 165.1, 164.4, 144.8, 144.5, 133.7, 131.7, 129.6, 124.3, 98.5, 75.9, 60.4, 50.3, 47.4, 45.5, 35.3, 14.2; HRMS (ES⁺) mass calc'd. For $C_{22}H_{20}INO_4$ 489.0437; found $[M+1]^+$ 490.0485. $[\alpha]_D^{25} = -9.0^{\circ}$ (C = 1.33mg/ml), CHCl₃ for 25% ee; HPLC:DAICEL AD Chiralpak, 9:1 Hexane/isopropanol, flow 1 ml/min, retention time: major enantiomer 32.55 min, minor enantiomer 47.68 min.

Ethyl 3-(3-iodo-1-methyl-2,8-dioxo-1,2,4,5,6,6a,7,8-octahydrobenzo[*h*]indol-6-yl)acrylate (32)

Method A: 4-(3-iodo-1-methyl-2,8-dioxo-1-azaspiro[4.5]deca-3,6,9-trien-1 yl)butanal (**27**) (20 mg, 0.058 mmol), catalyst **3b** (4 mg, 0.012 mmol) and benzoic acid (1.4g, 0.012 mmol) in CH_2Cl_2 at 0 °C. The resulting mixture was stirred for 12 h at 0 °C, quenched with water and extracted with CH_2Cl_2 (2 x 7 ml).

The combined organic layers were dried over MgSO₄, concentrated under reduced pressure and taken up in CH_2Cl_2 (2ml). After cooling to -78 °C, (carbethoxymethylene)triphenylphosphine (30 mg, 0.086 mmol) was added. The solution was stirred for 4 h, slowly warming to room temperature. The reaction was quenched with water and extracted with CH₂Cl₂ (2 x 10 ml), the combined organic layers were dried over MgSO₄, concentrated under reduced pressure. Chromatography on silica gel (CH₂Cl₂:acetone, 9:1) afforded compound 32 as a white solid (20 mg, 79% yield). MP: 216-218 °C; Rf 0.60 (CH₂Cl₂:acetone, 9:1); λ_{max} (film) / cm⁻¹ 3674, 2923, 2300, 1681, 1367, 1231, 1021, 875, 757; ¹H NMR (500 MHz, C₆D₆) δH 6.38 $(1H, dd, J = 15.6 Hz, J = 10.0 Hz, H^8)$, 5.83 $(1H, d, J = 10.2 Hz, H^7)$, 5.71 $(1H, d, J = 10.2 Hz, H^7)$ 15.6 Hz, H^9), 4.69 (1H, dd, J = 10.2 Hz, J = 2.0 Hz, H^6), 4.20-3.92 (2H, m, CH_2CH_3), 2.50 (3H, s, NCH₃), 2.37 (1H, ddd, J = 13.4 Hz, J = 3.9 Hz, J = 2.7 Hz, H^{1b}), 2.21 (1H, dt, J = 17.7 Hz, J = 1.1 Hz, H^{5a}), 2.04 (1H, dd, J = 17.7 Hz, J = 5.2 Hz, H^{5b}), 1.59 (1H, ddt, J = 15.6 Hz, J = 11.8 Hz, J = 4.0 Hz, H³), 1.40 (1H, app. dt, J = 13.6Hz, J = 4.7 Hz, H^{1a}), 1.14-1.09 (1H, m, H⁴), 1.02 (3H, t, J = 7.1 Hz, CH₂CH₃), 0.77-0.69 (1H, app. dq, J = 13.2 Hz, J = 1.8 Hz, H^{2b}), 0.64 (1H, app. dq, J = 13.3 Hz, J =3.9 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) δ_{C} 194.4, 166.5, 165.5, 164.0, 148.3, 141.3, 133.0, 124.4, 91.8, 66.8, 60.4, 45.4, 42.9, 38.4, 31.9, 28.3, 27.7, 14.2. HRMS (ES⁺)

mass calc'd. For C₁₈H₂₀INO₄ 441.0437 found $[(M+H)^+]$ 442.0501; $[\alpha]_D^{25} = -15.00^\circ$ (C = 4 mg/ml), CHCl₃ for 94% ee; HPLC:DAICEL AD Chiralpak, 8:2 Hexane/isopropanol, flow 1 ml/min, retention time: major enantiomer 21.43 min, minor enantiomer 25.55 min.

Ethyl 3-(1-bromo-2-iodo-3,9-dioxo-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinolin-7-yl)acrylate (11)

General procedure 5, (arbethoxymethylene)triphenylphosphine (240.38 mg, 0.69 mmol) was added to a solution of 1-bromo-2-iodo-3,9-dioxo-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-

7-carbaldehyde (**10**) (200 mg, 0.46 mmol) in CH₂Cl₂ (15 mL), at -78 °C, 16 h, chromatography on silica gel (CH₂Cl₂:acetone, 9:1) to afford compound **11** as a white solid (205 mg, 90% yield). Rf 0.54 (CH₂Cl₂:MeOH, 95:5); MP: 218-220 °C; λ_{max} (film) / cm⁻¹ 2979, 2292, 1704, 1684, 1394, 1272, 1186, 1146, 1051, 851, 742; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 6.30 (1H, ddd, J = 15.6, J = 10.0 Hz, J = 3.9 Hz, H⁸), 5.87 (1H, d, J = 10.0 Hz, H⁷), 5.68 (1H, dd, J = 15.6 Hz, J = 2.5 Hz, H⁹), 4.88 (1H, dd, J = 10.0 Hz, J = 2.5 Hz, H⁶), 4.11-4.00 (3H, m, H^{1a}, C<u>H</u>₂CH₃), 2.86 (1H, dd, J = 17.7 Hz, J = 7.1 Hz, H^{5b}), 2.25 (1H, app. d, J = 17.7 Hz, H^{5a}), 1.99 (1H, app. dt, J = 13.2 Hz, J = 3.0 Hz, H^{1a}), 1.66 (1H, ddt, J = 15.6 Hz, J = 11.8 Hz, J = 4.7 Hz, H³), 1.01 (3H, t, J = 7.1 Hz, CH₂C<u>H₃</u>), 0.82-0.73 (2H, m, H^{2b}, H⁴), 0.62 (1H, app. dq, J = 13.2 Hz, J = 4.7 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 193.9, 165.4, 163.4, 147.9, 147.1, 143.6, 133.8, 124.5, 103.8, 69.2, 60.4, 42.8, 41.0, 38.2, 37.4, 30.6, 14.2; HRMS (ES⁺) mass calc'd. For C₁₇H₁₇BrINO₄ 504.9386; found [(M+NH₄)⁺] 522.9712. [α]_D²⁵ = + 83.4° (C = 1.95 mg/ml), CHCl₃ for 90% ee.

tert-butyl 3-(2-iodo-3,9-dioxo-1-phenyl-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1*j*]quinolin-7-yl)acrylate (33)

General procedure **5**, (tert-Butoxycarbonylmethylene)triphenylphosphorane (130 mg, 0.34 mmol) was added to a solution of 2-iodo-3,9-dioxo-1phenyl-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-7carbaldehyde (**4a**) (100 mg, 0.23 mmol) in CH₂Cl₂ (10 mL), at

-78 °C, 12 h, slowly warming to room temperature. Chromatography on silica gel (CH₂Cl₂:acetone, 1-2%) to afford compound **33** as a white solid (98 mg, 80% yield). Rf 0.59 (CH₂Cl₂:MeOH, 95:5); MP: 224-226 °C; λ_{max} (film) / cm⁻¹ 3053, 2927, 2923, 1679, 1393, 1326, 1153, 1136, 984, 847, 733, 701; ¹H NMR (500 MHz, C₆D₆) δ_{H} 7.13-6.98 (3H, m, <u>Ph</u>), 6.95-6.91 (2H, m, <u>Ph</u>), 6.41 (1H, dd, *J* = 15.5, *J* = 10.0, H⁸), 5.87 (1H, d, *J* = 10.0 Hz, H⁷), 5.71 (1H, d, *J* = 15.5 Hz, H⁹), 5.14 (1H, dd, *J* = 10.0 Hz, *J* = 1.9 Hz, H⁶), 4.23 (1H, ddd, *J* = 14.2 Hz, *J* = 4.6 Hz, *J* = 1.7 Hz, H^{1b}), 2.21 (1H, app. dt, *J* = 13.1 Hz, *J* = 2.9 Hz, H^{1a}), 2.02 (1H, app. d, *J* = 16.8 Hz, H^{5a}), 1.83 (1H, ddt, *J* = 15.2 Hz, *J* = 11.9 Hz, *J* = 3.9 Hz, H³), 1.51 (1H, dd, *J* = 16.8 Hz, *J* = 5.0 Hz, H^{5b}), 1.44 (9H, s, H¹⁰), 1.42-36 (1H, m, H⁴), 0.95 (1H, app. dq, *J* = 12.6 Hz, *J* = 1.9 Hz, H^{2b}), 0.80 (1H, app. dq, *J* = 12.6 Hz, *J* = 5.0 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) δ_{C} 193.7, 164.6, 164.0, 161.7, 146.9, 143.8, 134.8, 133.5, 129.3, 128.7, 128.0, 125.7, 100.4, 79.9, 68.8, 42.9, 40.3, 37.7, 36.9, 30.6, 27.8; HRMS (ES⁺) mass calc'd. For C₂₅H₂₆INO₄ 531.0907; found [(M+NH₄)⁺] 549.1238. [α]_D²⁵ = + 46.1° (C = 4.1 x10⁻³ g/mL), CHCl₃ for 92% ee;

tert-butyl (2*E*)-3-(2-iodo-3,9-dioxo-1-phenyl-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-*j*]quinolin-7-yl)acrylate (34)

General procedure **5**, (tert-Butoxycarbonylmethylene) triphenylphosphorane (59.52 mg, 0.170 mmol) was added to a solution of 2-iodo-3,9-dioxo-1-(thiophen-2-yl)-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinoline-7carbaldehyde (**4f**) (50 mg, 0.114 mmol) in CH₂Cl₂ (5 mL), at -78 °C, 13 h, chromatography on silica gel (CH₂Cl₂:acetone,

0-2%) to afford compound **34** as a white solid (42 mg, 69% yield). Rf 0.61 (CH₂Cl₂:MeOH, 95:5); MP: 220-222 °C; λ_{max} (film) / cm⁻¹ 2978, 1701, 1393, 1298, 1153, 989, 846, 749; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 6.90-6.86 (1H, m, H¹¹), 6.74-6.71 (2H, m, H¹², H¹³), 6.34 (1H, dd, J = 2.5 Hz, J = 1.7 Hz, H⁸), 5.85 (1H, d, J = 10.1, H⁷), 5.68 (1H, d, J = 15.5, H⁹), 5.1 (1H, dd, J = 13.1 Hz, J = 2.0 Hz, H⁶), 4.20 (1H, ddd, J = 13.1 Hz, J = 4.5 Hz, J = 2.0 Hz, H^{1b}), 2.15 (1H, app. dt, J = 13.1 Hz, J = 2.0 Hz, H^{1a}), 2.00 (1H, dt, J = 17.2 Hz, J = 0.9 Hz, H^{5a}), 1.78 (1H, ddt, J = 15.5 Hz, J = 12.6 Hz, J = 4.5 Hz, H³), 1.48 (1H, dd, J = 17.2 Hz, J = 4.5 Hz, H^{5b}), 1.42 (9H, s, H¹⁰), 1.22-1.13 (1H, m, H⁴), 0.90 (1H, app. dq, J = 13.2 Hz, J = 2.0 Hz, H^{2b}), 0.75 (1H, app. dq, J = 12.6 Hz, J = 5.0 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 194.1, 164.4, 164.3, 157.4, 147.2, 144,0, 134.4, 133.4, 126.9, 126.9, 125.7, 125.0, 100.3, 80.2, 68.7, 43.5, 40.6, 37.6, 37.2, 30.7, 28.0; HRMS (ES⁺) mass calc'd. For C₂₃H₂₄INO₄S 537.0471; found [(M+H)⁺] 538.0543. [α]_D²⁵ = - 59.5° (C = 2.2 x 10⁻³ g/mL), CHCl₃ for 95% ee; HPLC:DAICEL AD Chiralpak, 8:2 Hexane/isopropanol, flow 1 mL/min, retention time: major 15.39 min, minor enantiomer 12.15 min.

tert-butyl 3-(1-bromo-2-iodo-3,9-dioxo-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1*j*]quinolin-7-yl)acrylate (35)

General procedure **5**, (tert-Butoxycarbonylmethylene) triphenylphosphorane (64.7 mg, 0.17 mmol) was added to a solution of 1-bromo-2-iodo-3,9-dioxo-5,6,7,7a,8,9-hexahydro-3H-pyrrolo[2,1-j]quinoline-7-carbaldehyde **10** (50 mg in CH₂Cl₂ (7 mL), at -78 °C, 15 h, chromatography on silica gel (CH₂Cl₂:acetone, 0-2%) to afford compound **35** as a white

solid (47.5 mg, 77% yield). Rf 0.57 (CH₂Cl₂:MeOH, 95:5); MP: 222-224; λ_{max} (film) / cm⁻¹ 3330, 2973, 2883, 1698, 1409, 1380, 1327, 1161, 1087, 1046, 880,739; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 6.26 (1H, dd, J = 15.5, J = 10.1 Hz, H⁸), 5.81 (1H, d, J = 10.1 Hz, H⁷), 5.64 (1H, d, J = 15.5 Hz, H⁹), 4.83 (1H, dd, J = 10.1 Hz, J = 2.0 Hz, H⁶), 4.02 (1H, ddd, J = 13.2 Hz, J = 4.6 Hz, J = 1.8 Hz, H^{1b}), 2.80 (1H, dd, J = 17.7 Hz, J = 5.6 Hz, H^{5b}), 2.23 (1H, app. d, J = 17.7 Hz, H^{5a}), 1.94 (1H, app. dt, J = 13.2 Hz, J = 3.4 Hz, H^{1a}), 1.64 (1H, ddt, J = 15.5 Hz, J = 11.4 Hz, J = 3.4 Hz, H³), 1.39 (9H, s, H¹⁰), 0.79-0.69 (2H, m, H^{2b}, H⁴), 0.60 (1H, app. dq, J = 11.4 Hz, J = 3.4 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 193.9, 164.9, 163.4, 161.4, 147.1, 143.7, 133.7, 126.8, 103.9, 80.3, 69.2, 42.8, 40.9, 38.3, 37.4, 30.7, 28.1; For C₁₉H₂₁BrINO₄ 532.9699; found [(M+NH₄)⁺] 551.0033. [α]_D²⁵ = +75.7° (C = 2.8 x10⁻³ g/mL), CHCl₃ for 90% ee; HPLC:DAICEL AD Chiralpak, 8:2 Hexane/isopropanol, flow 1 mL/min, retention time: major 12.74 min, minor enantiomer 15.95 min.

Ethyl 3-(1-bromo-3,9-dioxo-2-(phenylethynyl)-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinolin-7-yl)acrylate (12)

Et₃N/Benzene (5:1) (9.2 ml) was added to a mixture of compound **10** (130 mg, 0.25 mmol), CuI (5 mg, 0.026 mmol) and PdCl₂(PPh₃)₂ (18.2 mg, 0.026 mmol), followed by the addition of ethynylbenzene (31.6 mg, 0.31 mmol). The reaction was stirred at room temperature for 24h. After the reaction was completed, it was filtrated

over a pad of celite, extracted with CH₂Cl₂ and organic layer dried over MgSO₄. The solvent was evaporated under reduced pressure and chromatography on silica gel (CH₂Cl₂:acetone, 0-4%) gave compound **12** as a white solid (105 mg, 85% yield). Rf 0.70 (CH₂Cl₂:MeOH, 95:5) MP:198-200 °C. λ_{max} (film) / cm⁻¹ 2348, 1695, 1490, 1400, 1296, 1188, 1071, 996, 759; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 7.57-7.54 (2H, m, <u>Ph</u>), 7.03-6.90 (3H, m, <u>Ph</u>), 6.37 (1H, dd, J = 15.6, J = 10.1 Hz, H⁸), 5.94 (1H, d, J = 10.1 Hz, H⁷), 5.72 (1H, d, J = 15.6 Hz, H⁹), 5.04 (1H, dd, J = 10.1 Hz, J = 2.0 Hz, H⁶), 4.17 (1H, ddd, J = 17.1 Hz, J = 5.6 Hz, H^{5b}), 2.33 (1H, app. d, J = 17.8 Hz, H^{5a}), 2.08 (1H, app. dt, J = 13.2 Hz, J = 3.0 Hz, H^{1b}), 1.74 (1H, ddt, J = 15.2 Hz, J = 12.6 Hz, $J^2 = 4.0$ Hz, H³), 1.03 (3H, t, J = 7.1 Hz, CH₂CH₃), 0.98-0.93 (1H, m, H⁴), 0.85 (2H, app. dq, J = 13.5 Hz, J = 2.1 Hz, H^{2a}), 0.71 (1H, app. dq, J = 12.6 Hz, J = 5.1 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 194.0, 165.4, 162.6, 148.1, 144.0, 142.1, 134.0, 132.4, 129.6, 128.7, 126,0, 124.5, 122.2, 101.7, 80.6, 65.9, 60.4, 43.2, 41.3, 38.2, 36.8, 30.6, 14.2; HRMS (ES⁺) mass calc'd. For C₂₅H₂₂BrINO₄ 479.0732; found [(M+NH₄)⁺] 497.1068. [α]_D²⁵ = + 131.1° (C = 0.85 mg/ml), CHCl₃ for 90% ee.

See, Camerel, F.; Ulrich, G.; Retailleau, P.; Ziessel, R., Ethynyl-boron subphthalocyanines displaying efficient cascade energy transfer and large Stokes shifts. *Angew Chem Int Ed Engl*, **2008**, 47, (46), 8876-80.

tert-butyl 3-(1-bromo-2-iodo-3,9-dioxo-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1*j*]quinolin-7-yl)acrylate (13)

In air, $Pd(OAc)_2$ (0.77 mg, 0.004 mmol, 10%), PPh_3 (2.09 mg, 0.008 mmol, 20%), phenyl boronic acid (7.67mg, 0.063 mmol), compound **12** (20 mg, 0.042 mmol) and K₂CO₃ (11.6 mg, 0.084 mmol) were placed in a vial equipped with a stir bar. The vial was sealed with a

septum screw-cap, and then it was evacuated and filled with argon (three cycles). Benzene/H₂O (5/1, 2.4 mL) was added, and the resulting heterogeneous reaction mixture was stirred vigorously for 15 hours at 60 °C. The reaction mixture was then poured into Et₂O (30 mL), filtered through a short pad of celite, concentrated under reduced pressure, and purified by flash chromatography on silica gel (CH₂Cl₂:acetone, 0-5%) to afford compound **13** as a white solid (18.6 mg, 93%). Rf 0.66 (CH₂Cl₂:MeOH, 95:5); Mp: 174-176 °C; λ_{max} (film) / cm⁻¹ 2979, 2903, 1705, 1685, 1572, 1406, 1299, 1239, 759; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ 7.37 (2H, dd, J = 8.0 Hz, J = 1.5 Hz, <u>Ph</u>), 7.31 (2H, dd, J = 7.4 Hz, J = 2.0 Hz, <u>Ph</u>), 7.15-6.99 (6H, m, <u>Ph</u>), 6.42 (1H, dd, J = 15.6 Hz, J = 9.5 Hz, H⁸), 5.99 (1H, d, J = 10.1 Hz, H⁷), 5.71 (1H, d, J = 15.6 Hz, H⁹), 5.40 (1H, dd, J = 10.1 Hz, J = 2.0 Hz, H⁶), 4.32 (1H, ddd, J = 13.2 Hz, J = 4.5 Hz, J = 1.6 Hz, H^{1b}), 4.13-4.00 (2H, m, C<u>H</u>₂CH₃), 2.22 (1H, app.

dt, J = 13.1 Hz, J = 3.1 Hz, H^{1a}), 2.02 (1H, dt, J = 17.8 Hz, J = 0.9 Hz, H^{5a}), 1.87 (1H, ddt, J = 17.2 Hz, J = 11.7 Hz, J = 3.9 Hz, H³), 1.69 (1H, dd, J = 17.2 Hz, J = 5.0 Hz, H^{5b}), 1.47-1.23 (2H, m, H^{2b}, H⁴), 1.00 (3H, t, J = 7.1 Hz, CH₂C<u>H₃</u>), 0.87 (1H, app. dq, J = 12.7 Hz, J = 4.7 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 194.2, 165.4, 164.6, 159.4, 148.1, 144.7, 134.1, 134,0, 132.4, 129.7, 129.0, 128.7, 128.5, 124.4, 122.7, 122.0, 98.7, 81.8, 65.9, 60.3, 43.9, 40.9, 38.0, 36.6, 30.7, 14.1; HRMS (ES⁺) mass calc'd. For C₃₁H₂₇NO₄ 477.1940; found [(M+H)⁺] 478.2012. [α]_D²⁵ = + 46.6° (C = 0.6 mg/ml), CHCl₃ for 90% ee.

See, Lunazzi, L.; Mancinelli, M.; Mazzanti, A., Arylbiphenylene Atropisomers: Structure, Conformation, Stereodynamics, and Absolute Configuration. *The Journal of Organic Chemistry* **2008**, 73, (6), 2198-2205.

7-((benzylamino)methyl)-2-iodo-1-phenyl-6,7,7a,8-tetrahydro-3*H*-pyrrolo[2,1-j]quinoline-3,9(5H)-dione (7a)

Benzylamine (12.4 mg, 0.116 mmol) was added to the solution of 2-iodo-3,9-dioxo-1-phenyl-5,6,7,7a,8,9-hexahydro-3*H*pyrrolo[2,1-j]quinoline-7-carbaldehyde (**4a**) (50 mg, 0.116 mmol) in 1,2-dichloroethane (5 mL) and it was stirred for 1h. The reaction mixture was then treated with sodium

triacetoxyborohydride (31.9 mg, 0.150 mmol) at 0°C. The mixture was stirred at rt under N₂ atmosphere for 16 h. The reaction mixture was guenched by adding aqueous saturated NaHCO₃ solution, and the product was extracted with CH₂Cl₂ (3 x 10 mL). The organic layer was dried over MgSO₄, and the solvent was concentrated under reduced pressure. Flash chromatography on silica gel (CH₂Cl₂:acetone, 0-10%) afforded compound 7a as a white solid (53 mg, 87% yield). Rf 0.24 (CH₂Cl₂:MeOH, 95:5); MP: 154-156 °C. λ_{max} (film) / cm⁻¹ 3060, 2921, 2342, 1682, 1452, 1400, 1210, 1028, 932, 805, 744, 702; ¹H NMR (500 MHz, CH₂Cl₂) δ_H 7.59-7.35 (3H, m, Ph), 7.33-7.19 (7H, m, Ph), 6.38 (1H, dd, J = 10.1, J = 2.0 Hz, H⁶), 6.27 (1H, d, J = 10.1Hz, H⁷), 4.39 (1H, ddd, J = 13.4 Hz, J = 4.5 Hz, J = 2.0 Hz, H^{1b}), 3.75 (2H, d, J =13.3 Hz, H^{9a}), 3.65 (2H, d, J = 13.3 Hz, H^{9b}), 2.92 (1H, app. dt, J = 13.2 Hz, J = 2.9Hz, H^{1a}), 2.70 (1H, dd, J = 12.5 Hz, J = 3.1 Hz, H^{8b}), 2.47 (1H, dd, J = 12.4 Hz, J = 6.5 Hz, H^{8a}), 2.30-2.21 (2H, m, H⁴, H^{5a}), 1.88 (1H, app. dq, J = 13.3 Hz, J = 2.2 Hz, H^{2b}), 1.78-1.71 (2H, m, H^3 , H^{5b}), 1.35 (1H, app. dq, J = 12.8 Hz, J = 4.2 Hz, H^{2a}); ¹³C NMR (125 MHz, CH₂Cl₂) δ_C 196.1, 164.8, 162.7, 145.0, 135.0, 133.9, 129.7, 129.1, 128.5, 128.4, 127.9, 127.2, 99.6, 70.20, 63.5, 50.9, 43.1, 41.7, 38.5, 37.5, 36.7, 30.0; HRMS (ES⁺) mass calc'd. For $C_{26}H_{25}IN_2O_2$ 524.0961; found [(M+H)⁺] 525.1027. $[\alpha]_{D}^{25} = +86.32^{\circ}$ (C = 1.42 mg/ml), CHCl₃ for 92% ee.

Butyl 3,9-dioxo-1-phenyl-2-(pyridin-3-yl)-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinolin-7-yl)acrylate (8a)

An-oven dried tube was charged with Pd₂(dba)₃ (3.6 mg, 0.004 mmol), X-Fos (0.016 mmol), 3-pyridine boronic acid (7.3 mg, 0.06 mmol), ethyl 2-iodo-3,9-dioxo-1-phenyl-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinolin-7-yl)acrylate (**7b**) (20 mg, 0.04 mmol) and

powdered anhydrous K_3PO_4 (16.9 mg, 0.08 mmol). The tube was capped with a rubber septum and then evacuated and backfilled with argon (this sequence was

carried out three times). *n*-butanol (1 mL) was added via syringe, through the septum. The septum was then replaced with a Teflon screwcap and the vial tube was sealed. The reaction mixture was heated to 100 °C overnight. After completion the reaction mixture was allowed to cool to room temperature. The reaction solution was then filtered through a short pad of celite (eluting with DCM) and the eluent was concentrated under reduced pressure. The crude material obtained was purified via flash chromatography on silica gel (CH₂Cl₂:acetone, 5-30%) to afford compound 8a as a white solid (14 mg, 77% yield) (^tButyl esther isolated). Rf 0.15 (CH₂Cl₂:MeOH, 95:5); MP: 170-172 °C. λ_{max} (film) / cm⁻¹ 2958, 2871, 2343, 2144, 1682, 1407, 1300, 1233, 1185, 1066, 943, 818, 760, 699; ¹H NMR δ_{H} (500 MHz, CD₂Cl₂) δ_{H} 8.49 (1H, d, J = 1.5 Hz, H¹⁰), 8.42 (1H, dd, J = 4.8 Hz, J = 1.5 Hz, H¹³), 7.81 (1H, dd, J = 8.1Hz, J = 1.5 Hz, H¹¹), 7.44-7.33 (3H, m, <u>Ph</u>), 7.23 (1H, dd, J = 8.1 Hz, J = 4.8 Hz, H¹²), 7.21-7.15 (2H, m, <u>Ph</u>), 6.54-6.49 (2H, m, H^7 , H^8), 6.36 (1H, d, J = 10.1 Hz, H^9), 5.81 $(1H, dd, J = 15.6 Hz, J = 0.5 Hz, H^{6}), 4.49 (1H, ddd, J = 13.5 Hz, J = 4.7 Hz, J = 1.9$ Hz, H^{1b}), 4.07 (2H, t, J = 7.1 Hz, J = 0.99 Hz, $OCH_2CH_2CH_2CH_3$), 2.97 (1H, app. dt, J = 13.1 Hz, J = 2.9 Hz, H^{1a}), 2.48 (1H, ddd, J = 21.2 Hz, J = 11.8 Hz, J = 3.8 Hz, H³), 2.24-2.06 (2H, m, H^{5b}, H⁴), 1.76 (1H, app. dq, J = 13.5 Hz, J = 2.6 Hz, H^{2b}), 1.72 (1H, dd, J = 17.7 Hz, J = 5.6 Hz, H^{5a}), 1.60 (2H, dt, J = 14.4 Hz, J = 7.4 Hz, $OCH_2CH_2CH_2CH_3$), 1.52 (1H, app. dq, J = 13.5 Hz, J = 5.7 Hz, H^{2a}), 1.40-1.32 (2H, m, OCH₂CH₂CH₂CH₃), 0.91 (3H, t, J = 7.4 Hz, OCH₂CH₂CH₂CH₂CH₃); ¹³C NMR (125) MHz, CD₂Cl₂) δ_C 195.9, 166.9, 166.2, 155.9, 149.9, 148.8, 148.2, 145.9, 137.9, 134.8, 133.7, 131.9, 130.0, 129.8, 129.0, 127.7, 124.9, 123.6, 66.6, 64.9, 44.0, 42.0, 38.5, 37.4, 31.8, 31.2, 19.7, 14.0; HRMS (ES⁺) mass calc'd. For $C_{30}H_{30}N_2O_4$ 482.2206; found $[(M+H)^+]$ 483.2267. $[\alpha]_D^{25} = +29.3^\circ$ (C = 0.45 mg/ml), CHCl₃ for 92% ee.

See, Billingsley, K.; Buchwald, S. L., Highly efficient monophosphine-based catalyst for the palladium-catalyzed suzuki-miyaura reaction of heteroaryl halides and heteroaryl boronic acids and esters. *J Am Chem Soc* **2007**, 129, (11), 3358-66.

Ethyl 2-morpholino-3,9-dioxo-1-phenyl-5,6,7,7a,8,9-hexahydro-3*H*-pyrrolo[2,1-j]quinolin-7-yl)acrylate (8b)

An-oven dried tube was charged with Pd₂(dba)₃ (3.6 mg, 0.004 mmol), BINAP (7.4 mg, 0.012 mmol), ethyl 2-iodo-3,9-dioxo-1-phenyl-5,6,7,7a,8,9-hexahydro-3*H*pyrrolo[2,1-j]quinolin-7-yl)acrylate (**7b**) (20 mg, 0.04 mmol) and powdered anhydrous CsCO₃ (65.2 mg, 0.2 mmol). The tube was capped with a rubber septum and

then evacuated and backfilled with argon (this sequence was carried out three times). Toluene (1 mL) was added via syringe through the septum and morpholine (5.2 mg, 0.06 mmol) in the same manner. The septum was then replaced with a Teflon screwcap and the vial tube was sealed. The reaction mixture was heated to 120 °C overnight. When the reaction was completed, the reaction mixture was allowed to cool to room temperature. The reaction solution was then filtered through a short pad of celite (eluting with DCM) and the eluent was concentrated under reduced pressure. The crude material obtained was purified via flash chromatography on silica gel (CH₂Cl₂:acetone, 5-15%) to afford compound **8b** as a white solid (16 mg, 86% yield). Rf 0.57 (CH₂Cl₂:MeOH, 95:5); MP: 178-180 °C. λ_{max} (film) / cm⁻¹ 2926, 2343, 2144, 1681, 1629, 1382, 1269, 1163, 1114, 762, 701; ¹H NMR $\delta_{\rm H}$ (500 MHz, C₆D₆) $\delta_{\rm H}$

7.03-6.91 (5H, m, <u>Ph</u>), 6.48 (1H, dd, J = 15.6, J = 9.4 Hz, H⁸), 5.93 (1H, d, J = 10.1 Hz, H⁷), 5.72 (1H, d, J = 15.6 Hz, H⁹), 5.36 (1H, dd, J = 10.1 Hz, J = 1.9 Hz, H⁶), 4.29 (1H, ddd, J = 13.4 Hz, J = 4.6 Hz, J = 1.6 Hz, H^{1b}), 4.08-3.88 (2H, m, C<u>H</u>₂CH₃), 3.62-3.53 (2H, m, H^{10a}, H^{13a}), 3.52-3.44 (4H, m, H¹¹, H¹²), 2.85-2.78 (2H, m, H^{10b}, H^{13b}), 2.23 (1H, ddd, J = 13.1 Hz, J = 5.3 Hz, J = 2.9 Hz, H^{1b}), 2.06 (1H, app. d, J = 17.1 Hz, H^{5a}), 1.94-1.85 (1H, m, H³), 1.60-1.47 (2H, m, H^{5b}), 1.36-1.29 (1H, m, H⁴), 0.97 (3H, t, J = 7.1 Hz, CH₂C<u>H₃</u>), 0.94-0.89 (1H, m, H^{2b}), 0.83 (1H, app. dq, J = 12.9 Hz, J = 4.7 Hz, H^{2a}); ¹³C NMR (125 MHz, C₆D₆) $\delta_{\rm C}$ 194.6, 165.5, 164.4, 148.8, 147.0, 139.6, 135.2, 132.6, 130.6, 130.5, 128.5, 127.3, 124.3, 67.0, 63.0, 60.3, 49.7, 44.0, 41.7, 38.0, 36.3, 31.0, 14.2; HRMS (ES⁺) mass calc'd. For C₂₇H₃₀N₂O₅ 462.2155; found [(M+H)⁺] 463.2219. [α]_D²⁵ = + 76.1° (C = 0.9 mg/ml), CHCl₃ for 92% ee.

See, Meyers, C.; Maes, B. U.; Loones, K. T.; Bal, G.; Lemiere, G. L.; Dommisse, R. A., Study of a new rate increasing "base effect" in the palladium-catalyzed amination of aryl iodides. *J Org Chem* **2004**, 69, (18), 6010-7.

HPLC data

Signal 2: DAD1 B, Sig=254,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	\$
1	22.783	MM	0.8266	1815.32031	36.60227	96.1851
2	25.670	MM	0.7156	71.99899	1.67691	3.8149
Totals :			1887.31930	38.27918		

Totals :

1.23426e4 530.52356

Signal 2: DAD1 B, Sig=254,16 Ref=360,100 Peak RetTime Type Width Height Area Area [min] [mAU*s] # [min] [mAU] 옹 1 32.556 MM 1.0835 1845.41748 28.38797 62.2100 2 47.687 MM 1.7687 1121.01392 10.56342 37.7900 Totals : 2966.43140 38.95139

2966.4

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

