Distinct Conformational Preferences of Prolinol and Prolinol Ether Enamines in Solution Revealed by NMR

Markus B. Schmid, Kirsten Zeitler and Ruth M. Gschwind*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

1 Experimental Details..S2

2 NMR Characterization of Enamines..S3

3 NMR Characterization of Organocatalysts..S5
1 Experimental Details

The enamines under investigation were created in situ by mixing freshly distilled aldehydes 1 or 2 (30 µmol) with a solution of 100 mol% of one the organocatalysts 3-9 in 0.6 mL of a deuterated solvent within a standard 5 mm NMR tube. The NMR tube was transferred to the spectrometer immediately after the preparation of the reaction mixture.

NMR measurements were performed at 300 K on a Bruker Avance DRX 600 (600.13 MHz) and on a Bruker Avance III 600 (600.25 MHz) spectrometer, the latter equipped with a TCI cryoprobe with z-gradient (53.5 G/cm). 1H-1H-NOESY spectra were recorded using a mixing time of 700 ms. NMR data were processed and evaluated with Bruker’s TOPSPIN 2.1.

Spartan '06 (http://www.wavefun.com) was employed for the structure models displayed in Figure 4B. The structures were refined with the help of molecular mechanics conformer distribution calculations (MMFF force field).
2 NMR Characterization of Enamines

Scheme S1 Overview of the prolinol enamines, relevant 1H chemical shifts and coupling constants.
(Note: Chemical shifts of Hβ1, Hγ1 and Hδ1 are listed below those of Hβ2, Hγ2, Hδ2.)
Scheme S2 Overview of the prolinol ether enamines, relevant 1H chemical shifts and coupling constants.

(Note: Chemical shifts of Hβ_1, Hγ_1 and Hδ_1 are listed below those of Hβ_2, Hγ_2, Hδ_2.)

Electronic Supplementary Material (ESI) for Chemical Science
Scheme S3 1H chemical shift assignment and relevant coupling constants of the prolinol organocatalysts.
(Note: Chemical shifts of Hβ1, Hγ1 and Hδ1 are listed below those of Hβ2, Hγ2, Hδ2.)
Scheme S4: 1H chemical shift assignment and relevant coupling constants of the prolinol ether organocatalysts.

(Note: Chemical shifts of $H\beta_1$, $H\gamma_1$ and $H\delta_1$ are listed below those of $H\beta_2$, $H\gamma_2$, $H\delta_2$.)

Electronic Supplementary Material (ESI) for Chemical Science