Supporting information

for

Labelling of nucleosides and oligonucleotides by solvatochromic 4-aminophthalimide fluorophore for studying DNA-protein interactions

Jan Riedl, a Radek Pohl, a Nikolaus P. Ernsting, b Petr Orság, c Miroslav Fojta, c Michal Hocek*a,d

a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic. Fax: +420 220183559; Tel: +420 220183324; E-mail: hocek@uochb.cas.cz
b Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
c Institute of Biophysics, v.v.i. Academy of Sciences of the Czech Republic; Kralovopolska 135, 61265 Brno, Czech Republic.
d Department of Organic and Nuclear Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.

Table of contents:
1. Additional figures 2
2. p53-DNA binding assay 6
3. Full emission spectrum 7
4. Copies of NMR spectra 8
5. Copies of MALDI-TOF spectra 15
1. Additional figures

Figure S1. Excitation (left) and fluorescence spectra (right, quantum distribution over wavenumbers) of dA^API (4) in several solvents (dee – diethyl ether, ea – ethyl acetate, thf – tetrahydrofurane, acn – acetonitrile, dmf – dimethyl formamide, meoh – methanol, w – water) upon excitation at 340 nm in all cases.

Figure S2. Excitation (left) and fluorescence spectra (right, quantum distribution over wavenumbers) of dA^DAPI (6) in several solvents (dee – diethyl ether, ea – ethyl acetate, thf – tetrahydrofurane, acn – acetonitrile, dmf – dimethyl formamide, meoh – methanol, w – water) upon excitation at 340 nm in all cases. Excitation at 380 nm was chosen for water solution.
Figure S3. Excitation (left) and fluorescence spectra (right, quantum distribution over wavenumbers) of dCDAPI (7) in several solvents (dee – diethyl ether, ea – ethyl acetate, thf – tetrahydrofuran, acn – acetonitrile, dmf – dimethyl formamide, meoh – methanol, w – water) upon excitation at 340 nm in all cases. Excitation at 380 nm was chosen for water solution.

Figure S4. a) Sovatochromism of dADAPI (4). Shown are the peak positions of the excitation (labelled abs) and emission (fls) bands of Figure S1 against a measure of solvent polarity. b) Sovatochromism of dADAPI (6). Shown are the peak positions of the excitation (labelled abs) and emission (fls) bands of Figure S2 against a measure of solvent polarity. Regression lines were calculated from the solvents dee, ea, thf, dmf and acn. Dashed lines represent the behavior of unsubstituted 4-amino-phthalimide.
Figure S5. Sovatochromism of dCDAPI (7). Shown are the peak positions of the excitation (labelled abs) and emission (fis) bands of Figure S4 against a measure of solvent polarity. Regression lines were calculated from the solvents
dee, ea, thf, dmf and acn. Dashed lines represent the behavior of unsubstituted 4-amino-phthalimide.

Figure S6. Comparison of fluorescence excitation (solid lines at left) and absorption bands (dashed) for the dAAPPTP (8) and dADAPTP (10) in water. Fluorescence excitation bands are structured and appear slightly red-shifted, compared to the unstructured absorption bands (see text).
Study of p53 binding at 1 μM concentration

Figure S7. Increase of fluorescence intensity of 1 μM dC^{API}-labeled DNA (pex^{p53} dC^{API}) upon p53 binding. The API-labeled DNA was titrated by 0.5 and 1 equivalent of p53 protein.
2. p53-DNA binding assay

Binding of p53 protein to API-modified 50-nt ds oligonucleotide substrate (pex^{p53}) prepared from temp^{p53} template using dC^{API}TP (9), see sequence in figure below: top strand is template temp^{p53}, primer stretch is denoted by *italics*, p53 recognition site is *bold*, cytosines bearing the API labels are *red* and extension of the primer by arrow) was checked by electrophoretic mobility shift assay (EMSA). The p53 protein was incubated with pexit{p53} in 50 mM KCl, 5 mM Tris (pH 7.6), 2 mM DTT, 0.01% Triton X-100 for 30-min at 10 °C. The reaction mixture contained 20 ng of the ^{32}P-labeled pexit{p53} and 120 ng of p53 protein. The protein– pexit{p53} complexes were detected by EMSA in 5% native polyacrylamide gel followed by autoradiography. Unmodified pexit{p53} was prepared using mixture of all four natural dNTPs.

As evident from the autoradiogram below, the p53 protein formed stable complexes with both unmodified and API-modified DNA substrates.

![Electrophoretic mobility shift assay of the binding of p53 to unmodified and modified DNA.](image)

Electronic Supplementary Material (ESI) for Chemical Science
This journal is © The Royal Society of Chemistry 2012
3. Full emission spectrum

![Full emission spectrum of API during SSB-DNA binding study](image)

Figure S9. Full emission spectra of API during SSB-DNA binding study.
4. Copies of 1H, 31P-NMR spectra

1H NMR spectrum of P-API (2)

1H NMR spectrum of P-DAPI (3)
1H NMR spectrum of dA$^\text{DAPI}$ (4)

1H NMR spectrum of dA$^\text{DAPI}$ (6)
1H NMR spectrum of dCAPI (5)

1H NMR spectrum of dCDAPI (7)
1H NMR spectrum of dAAPITP (8)

31P NMR spectrum of dAAPITP (8)
1H NMR spectrum of dADAPITP (10)

31P NMR spectrum of dADAPITP (10)
1H NMR spectrum of dC$^{\text{AP1TP}}$ (9)

31P NMR spectrum of dC$^{\text{AP1TP}}$ (9)
1H NMR spectrum of dC$^{\text{DAPI TP}}$ (11)

31P NMR spectrum of dC$^{\text{DAPI TP}}$ (11)
5. Copies of MALDI-TOF spectra

MALDI-TOF spectrum of pex^C(dC^{API}) oligonucleotide

MALDI-TOF spectrum of pex^{rnd16}(dC^{API}) oligonucleotide, peak at 5205.8 represents double charged ion-radical.

Both spectra contain fragmentation products which have lower molecular weight by 125 Da as result of single loss of uracil.