Electronic Supplementary Information - Part Three

Chloride, carboxylate and carbonate transport by ortho-

phenylenediamine-based bisureas

Stephen J. Moore,^{*a*} Cally J. E. Haynes,^{*a*} Jorge González, ^{*a,b*} Jennifer L. Sutton,^{*a*} Simon J. Brooks,^{*a*} Mark E. Light,^{*a*} Julie Herniman,^{*a*} G. John Langley,^{*a*} Vanessa Soto-Cerrato,^{*c*} Ricardo Pérez-Tomás,^{*c*} Igor Marques,^{*d*} Paulo J. Costa,^{*d*} Vítor Félix^{*d*} and Philip A. Gale*^{*a*}

Table S2. Crystal data and structure refinement details.

Identification code	2011sot0753 (BISMN02 HC	CO3)
Empirical formula	$C_{57}H_{72}N_{14}O_{15}$	
•	$2(C_{20}H_{16}N_6O_6), 2(C_8H_{20}N),$	CO ₃
Formula weight	1193.29	
Temperature	100(2) K	
Wavelength	0.71075 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 14.1445(18) Å	$\alpha = 86.271(8)^{\circ}$
	b = 14.338(2) Å	$\beta = 81.687(8)^{\circ}$
	c = 16.719(3) Å	$\gamma = 61.358(5)^{\circ}$
Volume	2944.5(8) $Å^3$	
Ζ	2	
Density (calculated)	$1.346 \text{ Mg} / \text{m}^3$	
Absorption coefficient	0.099 mm^{-1}	
F(000)	1264	
Crystal	Prism; Yellow	
Crystal size	$0.12 \times 0.10 \times 0.08 \text{ mm}^3$	
θ range for data collection	$2.91 - 27.48^{\circ}$	
Index ranges	$-16 \le h \le 18, -18 \le k \le 18,$	$-19 \le l \le 21$
Reflections collected	33949	
Independent reflections	13317 [$R_{int} = 0.0279$]	
Completeness to $\theta = 27.48^{\circ}$	98.5 %	
Absorption correction	Semi-empirical from equiva	alents
Max. and min. transmission	0.9921 and 0.9882	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	13317 / 36 / 770	
Goodness-of-fit on F^2	1.078	
Final <i>R</i> indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0618, wR2 = 0.1432	
R indices (all data)	R1 = 0.0780, wR2 = 0.1535	
Largest diff. peak and hole	0.630 and $-0.513 \text{ e} \text{ Å}^{-3}$	

Diffractometer: *Rigaku AFC12* goniometer equipped with an enhanced sensitivity (HG) *Saturn724+* detector mounted at the window of an *FR-E+ SuperBright* molybdenum rotating anode generator with HF *Varimax* optics (100µm focus). **Cell determination, Data collection, Data reduction and cell refinement & Absorption correction**: CrystalClear-SM Expert 2.0 r7 (Rigaku, 2011), **Structure solution**: SHELXS97 (G. M. Sheldrick, Acta Cryst. (1990) A**46** 467–473). **Structure refinement**: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). **Graphics:** CrystalMaker: a crystal and molecular structures program for Mac and Windows. CrystalMaker Software Ltd, Oxford, England (www.crystalmaker.com)

Special details: The counter-ions balancing the 2 negative charges of the carbonate ion comprise 1 whole and 2 half TEA molecules. The 2 half molecules lie on inversion centres and were refined using thermal parameter and geometrical restraints.

Table S3. Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom	x	y	Z	U_{eq}	<i>S.o.f.</i>	
		0	0			
NI4	5000	0	0	41(1)	l	
C50A	5788(4)	-1031(4)	7(3)	43(1)	0.50	
C51A	6690(5)	-1295(5)	556(4)	43(1)	0.50	
C52A	4655(4)	-852(4)	343(3)	43(1)	0.50	
C53A	4126(5)	-621(4)	1225(3)	43(1)	0.50	
C50B	5928(4)	-160(4)	487(3)	43(1)	0.50	
C51B	6911(4)	-1187(4)	487(4)	43(1)	0.50	
C52B	4390(4)	530(4)	848(3)	43(1)	0.50	
C53B	3851(5)	-72(4)	1329(3)	43(1)	0.50	
N15	0	0	0	40(1)	1	
C54A	1049(4)	-32(4)	166(3)	40(1)	0.50	
C55A	1517(5)	-381(5)	891(4)	40(1)	0.50	
C56A	-773(4)	282(4)	820(3)	40(1)	0.50	
C57A	-1112(4)	1415(4)	1081(3)	40(1)	0.50	
C54B	375(4)	-494(4)	681(3)	40(1)	0.50	
C55B	1397(5)	-573(5)	945(4)	40(1)	0.50	
C56B	-334(4)	1284(4)	-1(3)	40(1)	0.50	
C57B	-1094(4)	120+(+) 1836(4)	753(3)	40(1)	0.50	
01	723(2)	2380(2)	733(3) 712(2)	65(1)	0.50	
0^{1}	1799(2)	2320(1)	1534(1)	55(1)	1	
02	-253(1)	7804(1)	133+(1) 1838(1)	35(1)	1	
04	4069(1)	8005(1)	2750(1)	33(1) 37(1)	1	
05	7713(1)	2619(1)	2730(1) 2820(1)	$\frac{37(1)}{48(1)}$	1	
05	9177(1)	2019(1) 2782(1)	2620(1) 2674(1)	56(1)	1	
N1	1026(2)	2702(1) 2812(2)	1152(1)	46(1)	1	
N2	762(1)	6030(1)	2122(1)	$\frac{1}{28(1)}$	1	
N3	972(1)	7267(1)	2722(1) 2755(1)	28(1)	1	
N4	2846(1)	7361(1)	2899(1)	24(1)	1	
N5	4654(1)	6204(1)	2762(1)	25(1)	1	
N6	8184(2)	3163(2)	2747(1)	37(1)	1	
C1	851(2)	4469(2)	1621(1)	31(1)	1	
C2	432(2)	3979(2)	1209(2)	36(1)	1	
C_3	-498(2)	4527(2)	841(2)	42(1)	1	
C4	-1013(2)	5629(2)	894(2)	42(1)	1	
C_{5}	-671(2)	6159(2)	1300(1)	35(1)	1	
C6	317(2)	5577(2)	1675(1)	29(1)	1	
C7	431(2)	7099(2)	2211(1)	$\frac{29(1)}{28(1)}$	1	
C_8	904(2)	8262(2)	2211(1) 2897(1)	28(1)	1	
C_{0}	-93(2)	9189(2)	2077(1) 2966(2)	$\frac{20(1)}{37(1)}$	1	
C10	-156(2)	10166(2)	2700(2) 3083(2)	$\sqrt{3}(1)$	1	
C10	-130(2) 776(2)	10100(2) 10223(2)	3003(2) 3151(2)	+3(1) 30(1)	1	
	110(2)	10223(2)	3131(2)	37(1)	1	

C12	1779(2)	9310(2)	3101(1)	32(1)	1
C13	1856(2)	8318(2)	2966(1)	26(1)	1
C14	3864(2)	7264(2)	2792(1)	25(1)	1
C15	5772(2)	5830(2)	2741(1)	24(1)	1
C16	6266(2)	6482(2)	2701(1)	32(1)	1
C17	7380(2)	6029(2)	2698(2)	37(1)	1
C18	8028(2)	4943(2)	2719(1)	35(1)	1
C19	7523(2)	4321(2)	2742(1)	29(1)	1
C20	6413(2)	4732(2)	2759(1)	25(1)	1
O 7	-2273(2)	6287(2)	4688(1)	64(1)	1
08	-1096(2)	6438(2)	3776(1)	52(1)	1
O 9	2893(1)	1112(1)	3682(1)	38(1)	1
O10	6538(1)	1634(1)	813(1)	27(1)	1
O11	5913(2)	6696(1)	794(1)	54(1)	1
O12	6813(2)	6597(1)	-384(1)	43(1)	1
N7	-1384(2)	5912(2)	4262(2)	47(1)	1
N8	2094(1)	2911(2)	3434(1)	29(1)	1
N9	3798(1)	1840(1)	2826(1)	28(1)	1
N10	5454(1)	2196(1)	2032(1)	24(1)	1
N11	5627(1)	3403(1)	1164(1)	26(1)	1
N12	6382(2)	6239(1)	145(1)	31(1)	1
C21	361(2)	4350(2)	3861(1)	33(1)	1
C22	-641(2)	4768(2)	4335(2)	38(1)	1
C23	-960(2)	4155(2)	4868(2)	46(1)	1
C24	-236(2)	3086(2)	4902(2)	45(1)	1
C25	770(2)	2633(2)	4430(1)	38(1)	1
C26	1082(2)	3269(2)	3911(1)	31(1)	1
C27	2919(2)	1885(2)	3344(1)	28(1)	1
C28	4860(2)	979(2)	2734(1)	25(1)	1
C29	5124(2)	-49(2)	3013(1)	31(1)	1
C30	6193(2)	-848(2)	2931(1)	35(1)	1
C31	7025(2)	-655(2)	2563(1)	33(1)	1
C32	6771(2)	354(2)	2267(1)	28(1)	1
C33	5701(2)	1171(2)	2341(1)	24(1)	1
C34	5924(2)	2350(2)	1295(1)	22(1)	1
C35	6065(2)	3811(2)	514(1)	23(1)	1
C36	6496(2)	3317(2)	-243(1)	28(1)	1
C37	6903(2)	3776(2)	-860(1)	31(1)	1
C38	6883(2)	4739(2)	-745(1)	28(1)	1
C39	6440(2)	5212(2)	9(1)	23(1)	1
C40	6033(2)	4777(2)	639(1)	$\frac{-2}{24(1)}$	1
013	2902(1)	4141(1)	2567(1)	34(1)	1
014	2707(1)	5515(1)	3252(1)	33(1)	1
015	4338(1)	4377(1)	2638(1)	28(1)	1
C49	3316(2)	4671(2)	2818(1)	23(1)	1
N13	5921(2)	2116(1)	4766(1)	30(1)	1
C41	5281(2)	3028(2)	4217(1)	33(1)	1
C42	4451(2)	4050(2)	4652(2)	40(1)	1
-	- (-)	(-)	- \-/	- \ /	-

C43	5164(2)	1819(2)	5331(1)	34(1)	1
C44	4489(2)	1488(2)	4918(2)	39(1)	1
C45	6722(2)	1190(2)	4223(1)	38(1)	1
C46	7465(2)	201(2)	4653(2)	49(1)	1
C47	6495(2)	2444(2)	5300(1)	37(1)	1
C48	7294(2)	2782(3)	4863(2)	53(1)	1

Table S4. Bond lengths [Å] and angles [°].

N14–C50A ⁱ	1.360(5)	C2–C3	1.381(4)
N14-C50A	1.360(5)	C3–C4	1.389(4)
N14–C50B ⁱ	1.560(5)	C4–C5	1.388(3)
N14-C50B	1.560(5)	C5–C6	1.401(3)
N14–C52A ⁱ	1.567(4)	C8–C9	1.395(3)
N14-C52A	1.567(4)	C8–C13	1.409(3)
N14–C52B ⁱ	1.578(5)	C9–C10	1.385(3)
N14-C52B	1.578(5)	C10–C11	1.380(4)
C50A-C51A	1.563(6)	C11–C12	1.390(3)
C52A–C53A	1.534(6)	C12–C13	1.404(3)
C50B-C51B	1.463(6)	C15–C20	1.391(3)
C50B-C52B	1.926(7)	C15–C16	1.404(3)
C52B-C53B	1.528(6)	C16–C17	1.386(3)
N15–C54B ⁱⁱ	1.338(5)	C17–C18	1.379(3)
N15-C54B	1.338(5)	C18–C19	1.381(3)
N15-C54A	1.528(4)	C19–C20	1.385(3)
N15-C54A ⁱⁱ	1.528(4)	O7–N7	1.233(3)
N15-C56A ⁱⁱ	1.566(4)	O8–N7	1.231(3)
N15-C56A	1.566(4)	O9–C27	1.225(3)
N15-C56B	1.667(5)	O10–C34	1.229(2)
N15–C56B ⁱⁱ	1.667(5)	O11-N12	1.230(2)
C54A–C55A	1.413(6)	O12-N12	1.226(2)
C56A-C57A	1.531(5)	N7-C22	1.472(3)
C54B-C55B	1.522(6)	N8–C27	1.371(3)
C56B-C57B	1.514(6)	N8-C26	1.402(3)
O1-N1	1.231(3)	N9-C27	1.386(3)
O2-N1	1.227(3)	N9-C28	1.408(3)
O3–C7	1.225(2)	N10-C34	1.370(2)
O4–C14	1.224(2)	N10-C33	1.417(2)
O5–N6	1.237(3)	N11-C34	1.371(2)
O6–N6	1.229(2)	N11–C35	1.405(2)
N1-C2	1.471(3)	N12-C39	1.467(3)
N2-C7	1.384(3)	C21–C22	1.385(3)
N2-C6	1.402(3)	C21–C26	1.393(3)
N3-C7	1.369(3)	C22–C23	1.390(4)
N3–C8	1.416(3)	C23–C24	1.379(4)
N4-C14	1.365(3)	C24–C25	1.388(3)
N4-C13	1.411(2)	C25–C26	1.397(3)
N5-C14	1.388(2)	C28–C29	1.401(3)
N5-C15	1.401(2)	C28–C33	1.410(3)
N6-C19	1.464(3)	C29–C30	1.385(3)
C1–C2	1.379(3)	C30–C31	1.385(3)
C1–C6	1.396(3)	C31–C32	1.389(3)

C32–C33	1.394(3)	O15–C49	1.290(2)
C35-C40	1.392(3)	N13-C45	1.513(3)
C35-C36	1.399(3)	N13-C43	1.520(3)
C36–C37	1.389(3)	N13-C47	1.520(3)
C37–C38	1.393(3)	N13-C41	1.523(3)
C38–C39	1.384(3)	C41–C42	1.515(3)
C39–C40	1.383(3)	C43–C44	1.511(3)
O13-C49	1.279(2)	C45-C46	1.513(3)
O14–C49	1.291(2)	C47–C48	1.512(3)
C50A ⁱ -N14-C50A	180.0(7)	C54B ⁱⁱ –N15–C54B	180.0(8)
C50A ⁱ –N14–C50B ⁱ	67.4(3)	C54B ⁱⁱ –N15–C54A	115.2(3)
C50A-N14-C50B ⁱ	112.6(3)	C54B-N15-C54A	64.8(3)
C50A ⁱ -N14-C50B	112.6(3)	C54B ⁱⁱ –N15–C54A ⁱⁱ	64.8(3)
C50A-N14-C50B	67.4(3)	C54B-N15-C54A ⁱⁱ	115.2(3)
C50B ⁱ -N14-C50B	180.0(4)	C54A–N15–C54A ⁱⁱ	180.0(5)
C50A ⁱ -N14-C52A ⁱ	62.1(3)	C54B ⁱⁱ –N15–C56A ⁱⁱ	59.6(3)
C50A-N14-C52A ⁱ	117.9(3)	C54B–N15–C56A ⁱⁱ	120.4(3)
C50B ⁱ -N14-C52A ⁱ	104.9(3)	C54A–N15–C56A ⁱⁱ	73.1(3)
C50B-N14-C52A ⁱ	75.1(3)	C54A ⁱⁱ –N15–C56A ⁱⁱ	106.9(3)
C50A ⁱ -N14-C52A	117.9(3)	C54B ⁱⁱ –N15–C56A	120.4(3)
C50A-N14-C52A	62.1(3)	C54B-N15-C56A	59.6(3)
C50B ⁱ -N14-C52A	75.1(3)	C54A-N15-C56A	106.9(3)
C50B-N14-C52A	104.9(3)	C54A ⁱⁱ –N15–C56A	73.1(3)
C52A ⁱ –N14–C52A	180.0(4)	C56A ⁱⁱ –N15–C56A	180.0(4)
C50A ⁱ –N14–C52B ⁱ	116.6(3)	C54B ⁱⁱ –N15–C56B	67.0(3)
C50A-N14-C52B ⁱ	63.4(3)	C54B-N15-C56B	113.0(3)
$C50B^{i}$ -N14-C52 B^{i}	75.7(3)	C54A-N15-C56B	77.6(3)
C50B-N14-C52B ⁱ	104.3(3)	C54A ⁱⁱ –N15–C56B	102.4(3)
$C52A^{i}-N14-C52B^{i}$	81.3(2)	C56A ⁱⁱ –N15–C56B	96.0(2)
C52A–N14–C52B ⁱ	98.7(2)	C56A-N15-C56B	84.0(2)
C50A ⁱ -N14-C52B	63.4(3)	$C54B^{ii}-N15-C56B^{ii}$	113.0(3)
C50A-N14-C52B	116.6(3)	C54B–N15–C56B ⁱⁱ	67.0(3)
C50B ⁱ –N14–C52B	104.3(3)	C54A–N15–C56B ⁱⁱ	102.4(3)
C50B-N14-C52B	75.7(3)	C54A ⁱⁱ –N15–C56B ⁱⁱ	77.6(3)
C52A ⁱ –N14–C52B	98.7(2)	C56A ⁱⁱ –N15–C56B ⁱⁱ	84.0(2)
C52A-N14-C52B	81.3(2)	C56A–N15–C56B ⁱⁱ	96.0(2)
C52B ⁱ –N14–C52B	180.00(18)	C56B–N15–C56B ⁱⁱ	180.0(5)
N14-C50A-C51A	116.5(4)	C55A-C54A-N15	125.3(4)
C53A-C52A-N14	111.9(3)	C57A-C56A-N15	110.2(3)
C51B-C50B-N14	120.8(4)	N15-C54B-C55B	121.8(4)
C51B-C50B-C52B	142.1(4)	C57B-C56B-N15	110.9(4)
N14-C50B-C52B	52.6(2)	O2-N1-O1	123.3(2)
C53B-C52B-N14	112.5(4)	O2-N1-C2	119.0(2)
C53B-C52B-C50B	121.2(4)	O1-N1-C2	117.7(2)
N14-C52B-C50B	51.7(2)	C7-N2-C6	127.22(18)

C7–N3–C8	124.56(17)	C27-N9-C28	126.21(17)
C14-N4-C13	126.41(17)	C34-N10-C33	122.69(17)
C14-N5-C15	125.60(17)	C34-N11-C35	125.69(17)
O6-N6-O5	123.45(19)	O12-N12-O11	123.07(18)
O6-N6-C19	118.3(2)	O12-N12-C39	118.79(18)
O5-N6-C19	118.23(17)	O11-N12-C39	118.13(17)
C2-C1-C6	119.1(2)	C22-C21-C26	119.2(2)
C1-C2-C3	123.4(2)	C21-C22-C23	122.7(2)
C1-C2-N1	117.6(2)	C21-C22-N7	117.6(2)
C3-C2-N1	119.0(2)	C23-C22-N7	119.7(2)
С2-С3-С4	116.8(2)	C24-C23-C22	117.1(2)
C5-C4-C3	122.0(2)	C23-C24-C25	122.0(2)
C4-C5-C6	119.7(2)	C24-C25-C26	119.9(2)
C1-C6-C5	119.1(2)	C21-C26-C25	119.1(2)
C1-C6-N2	116.55(19)	C21-C26-N8	115.9(2)
C5-C6-N2	124.4(2)	C25-C26-N8	125.0(2)
O3-C7-N3	124.5(2)	O9-C27-N8	124.94(19)
O3-C7-N2	123.7(2)	O9-C27-N9	124.3(2)
N3-C7-N2	111.78(17)	N8-C27-N9	110.77(18)
C9-C8-C13	119.4(2)	C29-C28-N9	123.76(19)
C9-C8-N3	120.9(2)	C29-C28-C33	118.50(19)
C13-C8-N3	119.66(17)	N9-C28-C33	117.74(17)
C10-C9-C8	120.9(2)	С30-С29-С28	120.6(2)
С11-С10-С9	119.8(2)	C29-C30-C31	121.0(2)
C10-C11-C12	120.7(2)	C30-C31-C32	118.9(2)
C11-C12-C13	120.1(2)	C31-C32-C33	121.1(2)
C12-C13-C8	119.12(18)	C32-C33-C28	119.75(18)
C12-C13-N4	123.29(19)	C32-C33-N10	120.52(18)
C8-C13-N4	117.58(18)	C28-C33-N10	119.72(17)
O4-C14-N4	125.24(19)	O10-C34-N10	124.20(18)
O4-C14-N5	123.59(19)	O10-C34-N11	124.15(18)
N4-C14-N5	111.14(17)	N10-C34-N11	111.65(17)
C20-C15-N5	116.05(18)	C40-C35-C36	119.15(18)
C20-C15-C16	119.37(18)	C40-C35-N11	117.08(17)
N5-C15-C16	124.59(18)	C36-C35-N11	123.75(18)
C17-C16-C15	119.9(2)	C37-C36-C35	120.40(19)
C18-C17-C16	121.6(2)	C36-C37-C38	121.26(19)
C17-C18-C19	117.3(2)	C39-C38-C37	116.79(18)
C18-C19-C20	123.5(2)	C40-C39-C38	123.67(18)
C18-C19-N6	119.11(19)	C40-C39-N12	117.99(18)
C20-C19-N6	117.43(19)	C38-C39-N12	118.33(17)
C19-C20-C15	118.40(19)	C39-C40-C35	118.72(18)
O8-N7-O7	123.6(3)	O13-C49-O15	120.73(18)
O8-N7-C22	118.8(2)	O13-C49-O14	119.93(18)
O7-N7-C22	117.6(2)	O15-C49-O14	119.33(18)
C27-N8-C26	127.30(18)	C45-N13-C43	110.81(17)

C45-N13-C47	111.44(18)	C42-C41-N13	114.99(19)
C43-N13-C47	106.51(16)	C44-C43-N13	115.20(18)
C45-N13-C41	106.94(17)	N13-C45-C46	115.4(2)
C43-N13-C41	110.65(17)	C48-C47-N13	115.9(2)
C47-N13-C41	110.54(17)		

Symmetry transformations used to generate equivalent atoms: (i) -x+1,-y,-z (ii) -x,-y,-z

Atom	$U^{\scriptscriptstyle 11}$	U^{22}	U33	U^{23}	U^{13}	U^{12}	
N14	45(1)	44(1)	39(1)	-1(1)	-7(1)	-25(1)	
C50A	54(1)	36(1)	41(1)	3(1)	-5(1)	-24(1)	
C51A	54(1)	36(1)	41(1)	3(1)	-5(1)	-24(1)	
C52A	54(1)	36(1)	41(1)	3(1)	-5(1)	-24(1)	
C53A	54(1)	36(1)	41(1)	3(1)	-5(1)	-24(1)	
C50B	54(1)	36(1)	41(1)	3(1)	-5(1)	-24(1)	
C51B	54(1)	36(1)	41(1)	3(1)	-5(1)	-24(1)	
C52B	54(1)	36(1)	41(1)	3(1)	-5(1)	-24(1)	
C53B	54(1)	36(1)	41(1)	3(1)	-5(1)	-24(1)	
N15	38(1)	44(1)	43(1)	-12(1)	-2(1)	-22(1)	
C54A	36(1)	39(1)	47(1)	-12(1)	2(1)	-20(1)	
C55A	36(1)	39(1)	47(1)	-12(1)	2(1)	-20(1)	
C56A	36(1)	39(1)	47(1)	-12(1)	2(1)	-20(1)	
C57A	36(1)	39(1)	47(1)	-12(1)	2(1)	-20(1)	
C54B	36(1)	39(1)	47(1)	-12(1)	2(1)	-20(1)	
C55B	36(1)	39(1)	47(1)	-12(1)	2(1)	-20(1)	
C56B	36(1)	39(1)	47(1)	-12(1)	2(1)	-20(1)	
C57B	36(1)	39(1)	47(1)	-12(1)	2(1)	-20(1)	
01	73(1)	52(1)	80(2)	-16(1)	-11(1)	-35(1)	
O2	56(1)	33(1)	71(1)	2(1)	-12(1)	-16(1)	
O3	30(1)	26(1)	42(1)	8(1)	-10(1)	-7(1)	
O4	32(1)	22(1)	55(1)	1(1)	-1(1)	-13(1)	
O5	30(1)	27(1)	77(1)	15(1)	-2(1)	-7(1)	
O6	22(1)	39(1)	90(2)	7(1)	-8(1)	-2(1)	
N1	50(1)	38(1)	53(1)	-8(1)	3(1)	-25(1)	
N2	22(1)	24(1)	35(1)	7(1)	-7(1)	-9(1)	
N3	21(1)	23(1)	35(1)	6(1)	-4(1)	-7(1)	
N4	23(1)	15(1)	32(1)	-2(1)	-4(1)	-6(1)	
N5	20(1)	20(1)	33(1)	0(1)	-3(1)	-9(1)	
N6	24(1)	31(1)	45(1)	10(1)	-4(1)	-6(1)	
C1	26(1)	31(1)	34(1)	2(1)	0(1)	-13(1)	
C2	36(1)	33(1)	38(1)	0(1)	2(1)	-18(1)	
C3	43(1)	51(2)	40(1)	-3(1)	-4(1)	-28(1)	
C4	34(1)	50(2)	43(1)	4(1)	-10(1)	-20(1)	
C5	28(1)	34(1)	40(1)	6(1)	-7(1)	-13(1)	
C6	25(1)	31(1)	31(1)	4(1)	-1(1)	-14(1)	
C7	20(1)	25(1)	32(1)	6(1)	1(1)	-8(1)	
C8	25(1)	21(1)	31(1)	1(1)	0(1)	-6(1)	
C9	24(1)	27(1)	49(1)	-2(1)	0(1)	-4(1)	
C10	32(1)	24(1)	56(2)	-5(1)	-2(1)	0(1)	
C11	39(1)	19(1)	49(1)	-4(1)	-9(1)	-4(1)	

Table S5. Anisotropic displacement parameters $[Å^2 \times 10^3]$. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + \dots + 2hka^*b^*U^{12}]$.

C12	33(1)	23(1)	36(1)	-2(1)	-7(1)	-8(1)
C13	25(1)	19(1)	25(1)	-1(1)	-2(1)	-4(1)
C14	26(1)	22(1)	26(1)	0(1)	-3(1)	-10(1)
C15	21(1)	27(1)	21(1)	-2(1)	-1(1)	-10(1)
C16	27(1)	27(1)	40(1)	-7(1)	0(1)	-12(1)
C17	29(1)	39(1)	47(1)	-13(1)	2(1)	-20(1)
C18	24(1)	44(1)	36(1)	-6(1)	-3(1)	-14(1)
C19	25(1)	27(1)	26(1)	3(1)	-3(1)	-6(1)
C20	23(1)	26(1)	22(1)	4(1)	-3(1)	-10(1)
O7	31(1)	75(2)	74(1)	-35(1)	16(1)	-18(1)
08	37(1)	47(1)	69(1)	-15(1)	1(1)	-19(1)
O9	37(1)	40(1)	39(1)	8(1)	3(1)	-24(1)
O10	29(1)	22(1)	29(1)	-5(1)	4(1)	-13(1)
011	95(2)	38(1)	34(1)	-8(1)	10(1)	-40(1)
O12	57(1)	35(1)	41(1)	6(1)	5(1)	-30(1)
N7	29(1)	57(1)	55(1)	-25(1)	2(1)	-20(1)
N8	26(1)	35(1)	28(1)	2(1)	3(1)	-17(1)
N9	23(1)	31(1)	28(1)	9(1)	0(1)	-13(1)
N10	23(1)	19(1)	26(1)	-1(1)	4(1)	-8(1)
N11	28(1)	19(1)	25(1)	-2(1)	7(1)	-8(1)
N12	40(1)	25(1)	30(1)	5(1)	-5(1)	-16(1)
C21	28(1)	46(1)	30(1)	-8(1)	0(1)	-22(1)
C22	28(1)	53(2)	36(1)	-15(1)	2(1)	-21(1)
C23	28(1)	73(2)	40(1)	-12(1)	7(1)	-29(1)
C24	34(1)	72(2)	37(1)	4(1)	3(1)	-33(1)
C25	31(1)	55(2)	33(1)	3(1)	0(1)	-26(1)
C26	25(1)	46(1)	26(1)	-3(1)	-1(1)	-22(1)
C27	28(1)	37(1)	24(1)	4(1)	-3(1)	-20(1)
C28	27(1)	26(1)	22(1)	2(1)	-4(1)	-13(1)
C29	37(1)	31(1)	30(1)	3(1)	-1(1)	-20(1)
C30	43(1)	22(1)	36(1)	2(1)	-4(1)	-14(1)
C31	32(1)	23(1)	38(1)	-1(1)	-4(1)	-8(1)
C32	25(1)	26(1)	33(1)	-1(1)	-3(1)	-11(1)
C33	25(1)	22(1)	24(1)	1(1)	-2(1)	-11(1)
C34	20(1)	22(1)	25(1)	-1(1)	-1(1)	-11(1)
C35	22(1)	22(1)	22(1)	1(1)	0(1)	-8(1)
C36	32(1)	25(1)	26(1)	-5(1)	4(1)	-14(1)
C37	34(1)	33(1)	22(1)	-4(1)	6(1)	-15(1)
C38	27(1)	28(1)	24(1)	3(1)	1(1)	-13(1)
C39	24(1)	21(1)	25(1)	2(1)	-4(1)	-11(1)
C40	26(1)	21(1)	20(1)	$\frac{1}{1}$	-2(1)	-9(1)
013	43(1)	43(1)	29(1)	2(1)	-2(1)	-31(1)
014	27(1)	18(1)	41(1)	2(1)	6(1)	-3(1)
015	22(1)	26(1)	32(1)	-7(1)	1(1)	-9(1)
C49	25(1)	18(1)	23(1)	7(1)	-4(1)	-9(1)
N13	34(1)	32(1)	26(1)	4(1)	-4(1)	-17(1)
	× /	· /	· /	× /	· /	

C41	39(1)	34(1)	30(1)	9(1)	-9(1)	-20(1)	
C42	41(1)	37(1)	43(1)	3(1)	-11(1)	-17(1)	
C43	41(1)	35(1)	28(1)	1(1)	3(1)	-22(1)	
C44	46(1)	37(1)	36(1)	-6(1)	2(1)	-24(1)	
C45	38(1)	35(1)	32(1)	5(1)	0(1)	-13(1)	
C46	51(2)	38(1)	43(1)	9(1)	-2(1)	-10(1)	
C47	40(1)	44(1)	33(1)	7(1)	-12(1)	-24(1)	
C48	54(2)	73(2)	49(2)	11(1)	-13(1)	-44(2)	

Atom	x	y	Z	U_{eq}	<i>S.o.f.</i>	
					0.70	
H50A	6144	-1242	-555	51	0.50	
H50B	5435	-1476	182	51	0.50	
H51A	7212	-2055	513	64	0.50	
H51B	6357	-1116	1118	64	0.50	
H51C	7067	-880	380	64	0.50	
H52A	4137	-862	9	51	0.50	
H52B	5304	-1563	306	51	0.50	
H53A	3923	-1169	1418	64	0.50	
H53B	3475	77	1263	64	0.50	
H53C	4642	-623	1560	64	0.50	
H50C	6161	373	289	51	0.50	
H50D	5603	23	1057	51	0.50	
H51D	7534	-1122	204	64	0.50	
H51E	6822	-1717	211	64	0.50	
H51F	7036	-1410	1046	64	0.50	
H52C	4916	556	1166	51	0.50	
H52D	3829	1270	765	51	0.50	
H53D	3070	408	1457	64	0.50	
H53E	4173	-337	1831	64	0.50	
H53F	3964	-672	1006	64	0.50	
H54A	1617	-472	-271	48	0.50	
H54B	941	701	79	48	0.50	
H55A	2190	-330	845	59	0.50	
H55B	1681	-1121	991	59	0.50	
H55C	1007	66	1341	59	0.50	
H56A	-1426	221	757	48	0.50	
H56B	-395	-225	1241	48	0.50	
H57A	-1595	1582	1594	59	0.50	
H57B	-1494	1917	666	59	0.50	
H57C	-465	1472	1149	59	0.50	
H54C	495	-1230	642	48	0.50	
H54D	-219	-145	1128	48	0.50	
H55D	1533	-957	1458	59	0.50	
H55E	1298	142	1016	59	0.50	
H55F	2016	-956	532	59	0.50	
H56C	332	1356	-28	48	0.50	
H56D	_691	1629	-485	48	0.50	
H57D	_1279	2589		-0 50	0.50	
1157D 1157D	1217 _726	1502	1727	50	0.50	
1137E 1157E	-750	1303	1232	50	0.50	
ПЈ/Г Н002	-1/38 131/	1//J 558/	110 2272	33 33	0.30	
H002	1314	5504 6710	2373 2025	33 21	1	
11703	1371	0/17	2022	54	1	

Table S6. Hydrogen coordinates [× 10⁴] and isotropic displacement parameters [Å² × 10³].

H904	2803	6767	2929	29	1
H905	4434	5726	2755	30	1
H1	1494	4059	1865	37	1
H3	-773	4169	566	50	1
H4	-1653	6032	645	50	1
H5	-987	6914	1323	42	1
H9	-738	9151	2932	45	1
H10	-837	10794	3116	52	1
H11	732	10893	3232	47	1
H12	2413	9357	3159	39	1
H16	5837	7232	2677	38	1
H17	7704	6479	2682	44	1
H18	8792	4636	2716	42	1
H20	6096	4276	2783	30	1
H908	2212	3399	3161	35	1
H909	3682	2403	2525	34	1
H910	4978	2755	2325	29	1
H911	5119	3864	1517	31	1
H21	554	4795	3507	39	1
H23	-1646	4459	5195	55	1
H24	-433	2646	5258	55	1
H25	1247	1892	4461	45	1
H29	4564	-199	3260	38	1
H30	6359	-1538	3129	41	1
H31	7758	-1205	2514	40	1
H32	7337	491	2009	34	1
H36	6512	2663	-337	34	1
H37	7201	3426	-1369	37	1
H38	7160	5057	-1165	33	1
H40	5739	5130	1146	28	1
H41A	5799	3177	3840	20 40	1
H41B	4900	2796	3889	40	1
H42A	3910	3923	5008	61	1
H42B	4089	4594	4254	61	1
H42C	4817	4294	4974	61	1
H43A	5606	1229	5679	41	1
H43B	4668	2435	5686	41	1
H44A	4035	2070	4579	58	1
H44B	4024	1319	5327	58	1
H44C	4970	859	4580	58	1
H45A	7177	1424	3848	45	1
H45B	6311	1003	3892	45	1
H46A	7940	353	4933	74	1
H46B	7908	-371	4258	74	1
H46C	7027	-19	5048	74	1
H47A	5938	3039	5651	44	1
H47B	6887	1841	5657	44	1
H48A	7882	2185	4542	80	1

H48B	7598	3002	5258	80	1
H48C	6921	3378	4505	80	1

Table S7. Hydrogen bonds [Å and °].

$D-H\cdots A$	<i>d</i> (<i>D</i> –H)	<i>d</i> (H··· <i>A</i>)	$d(D \cdots A)$	\angle (DHA)	
N2-H902-013	0.88	2.26	3.095(2)	158.7	
N2-H902O14	0.88	2.59	3.326(2)	142.2	
N3-H903014	0.88	1.90	2.726(2)	155.7	
N4-H904014	0.88	1.90	2.765(2)	166.9	
N5-H905015	0.88	2.03	2.885(2)	165.1	
N5-H905014	0.88	2.61	3.329(2)	139.0	
N8-H908013	0.88	1.91	2.765(2)	163.1	
N9-H909013	0.88	2.19	2.939(2)	142.8	
N10-H910O15	0.88	2.12	2.918(2)	150.2	
N10-H910O13	0.88	2.63	3.368(2)	142.5	
N11-H911O15	0.88	2.02	2.838(2)	154.5	

Symmetry transformations used to generate equivalent atoms:

(i) -x+1,-y,-z (ii) -x,-y,-z

Thermal ellipsoids drawn at the 35% probability level, counter ions and selected hydrogens omitted for clarity.