Copper-Catalyzed Olefinic C-H Trifluoromethylation of Enamides at Room Temperature

Chao Feng and Teck-Peng Loh*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

teckpeng@ntu.edu.sg.

Supporting Information

Table of Contents	Page No
General Information	S-2
Experimental Section	S-3
Substrate Synthesis	S-3
Copper-catalyzed olefinic C-H trifluoromethylation of enamides	S-7
Characterization of products	S-8
Reactivity profile of β -substituted acyclic enamides	S-14
Control experiments	S-16
Copper-catalyzed oxytrifluoromethylation of enamides	S-21
Characterization of products	S-21
¹ H and ¹³ C NMR spectra of products	S-25
X-ray Data	S-72

General information

Cu(MeCN)₄PF₆, CuCl, anhydrous MeOH were purchased from commercial suppliers and used as received unless otherwise noted. All reactions were carried out using standard Schlenk technic. THF was freshly distilled under sodium/benzophenone ketyl. Reactions were monitored through thin layer chromatography [Merck 60 F254 precoated silica gel plate (0.2 mm thickness)]. Subsequent to elution, spots were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible using basic solution of potassium permanganate or acidic solution of ceric molybdate as stain, followed by heating on a hot plate. Flash chromatography was performed using Merck silica gel 60 with distilled solvents. HRMS spectra were recorded on a Waters Q-Tof Permier Spectrometer. ¹H NMR and ¹³C NMR spectra were recorded using Bruker Avance 400 MHz spectrometers. ¹⁹F spectra were recorded (external standard α, α, α -trifluorotoluene (-63.73 ppm) ¹⁹F) using Bruker Avance 300 MHz spectrometers. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of SiMe₄ (δ 0.00, singlet). Multiplicities were given as: s (singlet); brs (broad singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublets of doublet); td (triplet of doublet); m (multiplets); ddt (doublet of doublet of triplet) and etc. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.00, triplet).

Experimental section

Substrate synthesis

2a-2d, 2g-2r were synthesized using reported method.^[1]

Tognis' reagent 1 was synthesized following the reported method.^[2]

General reaction scheme

Synthetic procedure: a) A mixture of ketone (10 mmol), NaOAc (12 mmol) and hydroxylamine hydrochloride (12 mmol) in methanol (5mL) was stirred for 2 h at 60 °C. After cooling to room temperature, water was added and the mixture was extracted with ethyl acetate (2×50 mL) dried over MgSO₄. The organic solvent was evaporated to afford the ketoxime pure enough for next step. b) To an oven-dried 50 mL two-neck RBF assembled with condenser was added ketoxime. The flask was vacuumed and backfilled with N₂ for three times. Anhydrous toluene (20 mL) was added followed by acetic anhydride (30 mmol), acetic acid (30 mmol) and iron powder (20 mmol). The reaction flask was put into a 70 °C preheated oil bath and allowed to stir for 5 hours under nitrogen atmosphere. After cooling to room temperature, ethyl acetate was added and the mixture was filtered through a short pad of celite. The solution thus obtained was evaporated to product crude enamide, which was directly purified by column chromatography.

^[1] a) M. Berg, R. M. Haak, A. J. Minnaard, A. H. M. Vries, J. G. Vries, B. L. Feringa, *Adv. Synth. Catal.* 2002, **344**, 1003; b) M. J. Burk, G. Casy, N. B. Johnsonn, *J. Org. Chem.* 1998, **63**, 6084; c) H. Zhou, W. J. Chung, Y. H. Xu, T. P. Loh, *Chem. Commun.* 2009, 3472.

[2] K. Stanek, R. Koller, A. Togni, J. Org. Chem. 2008, 73, 7678.

Reaction scheme for 2e synthesis

Synthetic procedure: a) An 50 mL RBF was charged with 2-fluorobenzonitrile (10 mmol), K_2CO_3 (20 mmol), pyridine (12 mmol), and DMSO (5 mL) sequentially. The reaction flask was subjected to a 90 °C preheated oil bath and stirred overnight, at which time the resulting mixture was cooled down to room temperature, diluted with ethyl acetate, and washed thoroughly with water. Removal of the solvent in *vacuo* and purification of the residue by silica gel column chromatography afforded the desired product 2-(piperidin-1-yl)benzonitrile in 90% yield.

b) To an oven-dried 50 mL two-neck RBF assembled with condenser was added 2-(piperidin-1-yl)benzonitrile and dry toluene (15 mL). MeMgBr (12 mmol, 3M in ether) was added to the solution under N₂ at room temperature. After stirring 10 minutes, the mixture was subjected to a 110 °C preheated oil bath and stirred overnight. After cooling to room temperature, Ac₂O (15 mmol) was added into the solution dropwise and the resulting mixture was stirred at room temperature for 2 hours, at which time saturated NaHCO₃ solution was added followed by extraction with ethyl acetate (2×50 mL), and drying over MgSO₄. The organic solvent was evaporated and the residue was subjected to column chromatography on silica gel to deliver the product **2e** in 56% yield.

S4

Reaction scheme for 2f synthesis

Synthetic procedure: a) The mixture of *o*-tolunitrile (20 mmol), NBS (21 mmol), and AIBN (1 mmol) in benzene (20 ml) was stirred at 80 °C for 1 h. After cooling to room temperature, the reaction was quenched with water and the mixture was extracted with ether followed by drying over MgSO₄. The organic solvent was evaporated to give the residue which is used directly in next step without purification.

b) To a suspension of AcOH (80 mmol) and K_2CO_3 (80 mmol) in DMF (90 mL) was added the crude 2-(bromomethyl)benzonitrile in DMF (10 mL) at room temperature, and the mixture was stirred at the same temperature for 1 hour. After quenching with water the mixture was extracted with ether followed by drying over MgSO₄. The organic solvent was evaporated to give the residue which is used directly in next step without purification.

c) To a suspension of K_2CO_3 (100 mmol) in 30 mL MeOH/H₂O (2:1) was added the above obtained 2-cyanobenzyl acetate. The mixture was stirred at room temperature and the progress of reaction was monitored through TLC. Once the reaction finished, water was added and thus resulting solution was extracted with ethyl acetate. After drying over MgSO₄, the organic solvent was evaporated and the residue was subjected to silica gel column chromatography to afford the desired product 2-(hydroxymethyl)benzonitrile in 75% yield.

d) To an oven-dried 50 mL two-neck RBF assembled with condenser was added 2-(hydroxymethyl)benzonitrile (5 mmol) and dry ether (10 mL). MeLi·LiBr

(7.5 mmol, 1M in ether) was slowly added into the solution under N₂ at 0 °C. After stirring for 2 hours at the same temperature, Ac₂O (15 mmol) was added and the resulting mixture was stirred at room temperature overnight. Saturated NaHCO₃ solution was added followed by extraction with ethyl acetate (2×50 mL), and drying over MgSO₄. The organic solvent was evaporated and the residue was subjected to column chromatography on silica gel to deliver the product **2f** in 23% yield.

Reaction scheme for 2s synthesis

Synthetic procedure: a) At room temperature TMSCl (10 mmol) was added to a solution of NaI (10 mmol) in MeCN (10 mL) followed by H_2O (5 mmol). After stirring for 10 minutes, but-3-ynylbenzene (6 mmol) was added and the resulting solution was stirred for 1 hour at room temperature. The reaction was quenched with H_2O (20 mL) and extracted with ethyl acetate followed by drying over MgSO₄. The organic solvent was evaporated to give the crude (3iodobut-3-enyl)benzene, which is used directly in next step without further purification.

b) To an oven-dried 50 mL two-neck RBF assembled with condenser was added CuI (1.5 mmol), K_2CO_3 (9 mmol), acetamide (12 mmol). The flask was vacuumed and backfilled with N_2 for three times. Anhydrous THF (5 mL) was added followed by DMEDA (3 mmol) and crude (3-iodobut-3-enyl)benzene. The reaction flask was put into a 70 °C preheated oil bath and allowed to stir overnight. After cooling to room temperature, water was added and the mixture was extracted with ethyl acetate (2×50 mL) followed by drying over MgSO₄.

The organic solvent was evaporated and the residue was subjected to column chromatography on silica gel to deliver the product **2s** in 33% yield.

Copper-catalyzed olefinic C-H trifluoromethylation of enamides

General reaction scheme

Synthetic procedure: An oven-dried 5mL Schlenk tube was charged with Tognis' regent 1 (0.11 mmol), 2 (0.1 mmol), Cu(MeCN)₄PF₆ (0.01 mmol) in sequence. The Schlenk tube was vacuumed and backfilled with nitrogen for three times followed by adding anhydrous THF (0.5 mL) through syringe and then closed tightly. After stirring at room temperature for 20 hours, saturated NaHCO₃ solution (20 mL) was added and the resulting mixture was extracted with dichloromethane (2x20 mL). Removal of the solvent in vacuo and purification of the residue by silica gel column chromatography afforded the desired product **3**.

Characterization of products

(*E*)-*N*-(3,3,3-trifluoro-1-phenylprop-1-enyl)acetamide:

NHCOMe Yield: 90%; White solid. m.p. = 141-143 °C; ¹H NMR (400 **MHz, CDCl₃**): δ 2.08 (s, 3H), 6.72 (s, 1H), 7.05 (q, ${}^{3}J_{\text{HF}} = 8.24$ Hz, 1H), 7.34-7.38 (m, 2H), 7.40-7.47 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 103.0 (q, J = 35.10 Hz), 122.9, 125.6, 128.1 (d, J = 1.35 Hz), 128.6, 129.8, 135.0, 143.7 (q, J =

5.70 Hz), 169.0 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.22 (d, ³J_{HF} = 8.27 Hz, 3F) ppm; **HRMS (ESI, m/z):** calcd for $C_{11}H_{11}NOF_3 [M+H]^+$ 230.0793, found: 230.0782.

(*E*)-*N*-(3,3,3-trifluoro-1-m-tolylprop-1-enyl)acetamide:

Yield: 86%; White solid. m.p. = 137-139 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.08 (s, 3H), 2.39 (s, 3H), 6.68 (s, 1H), 7.04 (q, ${}^{3}J_{\rm HF} = 8.28$ Hz, 1H), 7.16 (s, 2H), 7.24-7.32 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 21.3, 24.9, 102.7 (q, J = 34.80Hz), 122.9, 125.2 (d, J = 1.39 Hz), 125.6, 128.5, 128.6 (d, J =

1.28 Hz), 130.5, 134.9, 138.5, 143.9 (q, J = 6.04 Hz), 168.9 ppm; ¹⁹F NMR (282) **MHz, CDCl₃**): δ -54.24 (d, ${}^{3}J_{\text{HF}}$ = 8.33 Hz, 3F) ppm; **HRMS (ESI, m/z)**: calcd for C₁₂H₁₃NOF₃ [M+H]⁺ 244.0949, found: 244.0959.

(*E*)-*N*-(1-(2,4-dimethylphenyl)-3,3,3-trifluoroprop-1-enyl)acetamide:

NHCOMe Yield: 84%; White solid. m.p. = 144-146 °C; ¹H NMR Me (400 MHz, CDCl₃): δ 2.06 (s, 3H), 2.27 (s, 3H), 2.34 (s, 3H), 6.56 (s, 1H), 7.02-7.13 (m, 4H) ppm; ¹³C NMR (100 ĊF₃ Me **MHz, CDCl₃):** δ 18.8, 21.2, 24.8, 103.5 (q, *J* = 34.71 Hz), 3c 122.9, 125.6, 126.5, 128.9 (d, J = 1.30 Hz), 131.1, 131.4, 135.6, 139.6, 143.3 (q, J = 5.91 Hz), 169.0 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -41.15 (d, ³ $J_{\rm HF} =$ 10.94 Hz, 3F) ppm; HRMS (ESI, m/z): calcd for $C_{13}H_{14}NOF_3Na [M+Na]^+$ 280.0925, found: 280.0924.

(E)-N-(3,3,3-trifluoro-1-(4-methoxyphenyl)prop-1-enyl)acetamide:

NHCOMe Yield: 77%; White solid. m.p. = 142-144 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.09 (s, 3H), 3.83 (s, 3H), 6.69 (s, 1H), 6.89-7.00 (m, 3H), 7.27-7.30 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 55.3, 102.9 (q, J =34.85 Hz), 114.0, 123.0, 125.7, 127.2, 129.5 (d, J = 1.49 Hz), 143.5 (q, J = 6.30 Hz), 160.6, 169.0 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.15 (d, ³ $J_{HF} =$ 8.32 Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₂H₁₃NO₂F₃ [M+H]⁺ 260.0898,

(E) - N - (3,3,3 - trifluoro - 1 - (2 - (piperidin - 1 - yl) phenyl) prop - 1 - enyl) acetamide:

found: 260.0890.

Yield: 90%; White solid. m.p. = 131-133 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.58-1.60 (m, 2H), 1.64-1.69 (m, 4H), 2.10 (s, 3H), 2.99-3.01 (m, 4H), 7.01-7.14 (m, 3H), 7.35-7.39 (m, 2H), 8.00 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.0, 24.9, 26.8, 52.6, 102.9 (q, *J* = 34.97 Hz), 118.8, 119.2, 122.3, 123.1, 125.8, 127.5, 130.8, 132.1 (q, *J* = 3.09 Hz), 144.7 (q, *J* = 6.40

Hz), 150.2, 169.1 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.12 (d, ³J_{HF} = 8.81 Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₆H₂₀N₂OF₃ [M+H]⁺ 313.1528, found: 313.1527.

(E)-2-(1-acetamido-3,3,3-trifluoroprop-1-enyl)benzyl acetate:

Yield: 76%; White solid. m.p. = 107-109 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.08 (s, 3H), 2.11 (s, 3H), 4.96 (d, J = 13.03 Hz, 1H), 5.17 (d, J = 13.03 Hz, 1H), 7.19 (q, ³ $J_{\rm HF}$ = 8.15 Hz, 1H), 7.27-7.29 (m, 1H), 7.34-7.38 (m, 1H)7.41-7.45 (m, 2H), 7.56 (s, 1H) ppm; ¹³C NMR (100 MHz,

CDCl₃): δ 21.0, 24.8, 63.9, 104.3 (q, J = 34.82 Hz), 122.8, 125.5, 128.3 (d, J = 4.38 Hz), 129.7 (d, J = 1.67 Hz), 130.0, 133.2, 134.1, 142.4 (q, J = 5.93 Hz), 169.4, 171.3 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -55.24 (d, ³ $J_{HF} = 8.10$ Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₄H₁₅NO₃F₃ [M+H]⁺ 302.1004, found: 302.1003.

(E)-N-(1-(biphenyl-4-yl)-3,3,3-trifluoroprop-1-enyl)acetamide:

NHCOMe Yield: 84%; White solid. m.p. = 164-166 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.10 (s, 3H), 6.75 (s, 1H), 7.08 (q, ³J_{HF} = 8.27 Hz, 1H), 7.37-7.48 (m, 5H), 7.58-7.65 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 103.1 (q, J = 34.96 Hz), 122.9, 125.6, 127.1, 127.3, 127.9, 128.6 (d, J = 1.70 Hz), 128.9, 133.8, 139.9, 142.7, 143.5 (q, J = 5.99 Hz), 169.0 ppm; ¹⁹F NMR (282 MHz, **CDCl₃**): δ -54.11 (d, ³ $J_{\rm HF} = 8.33$ Hz, 3F) ppm; **HRMS (ESI, m/z)**: calcd for C₁₇H₁₄NOF₃Na [M+Na]⁺ 328.0925, found: 328.0912.

(*E*)-*N*-(3,3,3-trifluoro-1-(4-(trifluoromethyl)phenyl)prop-1-enyl)acetamide:

NHCOMe Yield: 84%; White solid. m.p. = 98-100 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.08 (s, 3H), 6.77 (s, 1H), 7.08 (q, ³J_{HF} = 8.28 Hz, 1H), 7.49 (d, J = 8.10 Hz, 2H), 7.70 (d, J = 8.15 Hz, 2H), ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.8, 103.9 (q, J = 35.18 Hz), 122.3, 122.6, 125.0, 125.3, 125.7 (q, J = 3.85 Hz), 127.7, 127.9, 128.8 (d, J = 1.45 Hz), 132.0 (q, J = 32.73 Hz), 138.3, 142.3 (q, J = 5.94 Hz), 169.0 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.34 (d, ³J_{HF} = 8.25 Hz, 3F); -63.93 (s, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₂H₁₀NOF₆ [M+H]⁺ 298.0667, found: 298.0658.

(*E*)-*N*-(1-(4-acetylphenyl)-3,3,3-trifluoroprop-1-enyl)acetamide:

Yield: 92%; White solid. m.p. = 126-128 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.15 (s, 3H), 2.56 (s, 3H), 7.09 (q, ³J_{HF} = 8.37 Hz, 1H), (s, 1H), 7.26 (s, 1H), 7.43 (d, J = 8.24 Hz, 2H), 7.87 (d, J = 8.24 Hz, 2H), ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.8, 26.6, 103.5 (q, J = 34.86 Hz),

122.7, 125.4, 128.4, 128.6, 137.5, 139.3, 142.8 (q, J = 6.06 Hz), 169.3, 197.7 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.18 (d, ³ $J_{HF} = 8.28$ Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₃H₁₂NO₂F₃Na [M+Na]⁺ 294.0718, found: 294.0724.

(E)-N-(1-(4-cyanophenyl)-3,3,3-trifluoroprop-1-enyl)acetamide:

Yield: 83%; White solid. m.p. = 159-161 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.11 (s, 3H), 7.02 (s, 1H), 7.09 (q, ³J_{HF} = 8.27 Hz, 1H), 7.50 (d, J = 8.24 Hz, 2H), 7.66 (d, J = 8.37 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.7, 104.0 (q, J = 35.13 Hz), 113.4, 118.0, 122.5, 125.2, 129.4

(d, J = 1.37 Hz), 132.3, 139.2, 141.9 (q, J = 6.21 Hz), 169.2 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.26 (d, ³ $J_{\rm HF} = 8.24$ Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₂H₁₀N₂OF₃ [M+H]⁺ 255.0745, found: 255.0747.

(*E*)-*N*-(3,3,3-trifluoro-1-(4-(methylsulfonyl)phenyl)prop-1-enyl)acetamide:

Hz), 122.7, 125.4, 127.2, 129.8 (d, J = 1.25 Hz), 140.2, 140.6, 142.2 (q, J = 5.92 Hz), 169.6 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -53.92 (d, ³ $J_{HF} = 8.34$ Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₂H₁₃NO₃F₃S [M+H]⁺ 308.0568, found: 308.0575.

(E)-N-(3,3,3-trifluoro-1-(4-fluorophenyl)prop-1-enyl)acetamide:

Yield: 80%; White solid. m.p. = 175-177 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.10 (s, 3H), 6.66 (s, 1H), 7.04 (q, ³J_{HF} = 8.29 Hz, 1H), 7.08-7.14 (m, 2H), 7.33-7.36 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.9, 103.5 (q, J = 34.82 Hz), 115.8 (d, J = 21.82 Hz), 122.8, 125.5, 130.3 (dd, J₁ =

8.64 Hz, J2 = 1.42 Hz), 130.9 (d, J = 3.67 Hz), 142.7 (q, J = 6.07 Hz), 162.4 (d, J = 250.60 Hz), 168.9 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.29 (d, ³ $J_{HF} = 8.22$ Hz, 3F), -111.38 (s, 1F) ppm; HRMS (ESI, m/z): calcd for C₁₁H₁₀NOF₄ [M+H]⁺ 248.0699, found: 248.0709.

(E)-N-(1-(4-bromophenyl)-3,3,3-trifluoroprop-1-enyl)acetamide:

Yield: 85%; White solid. m.p. = 143-145 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.09 (s, 3H), 6.69 (s, 1H), 7.04 (q, ³J_{HF} = 8.30 Hz, 1H), 7.22-7.25 (m, 2H), 7.55-7.58 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.8, 103.6 (q, J = 34.98 Hz), 122.7, 124.2, 125.4, 129.8 (d, J = 1.41 Hz), 131.9,

133.7, 142.6 (q, J = 6.30 Hz), 168.9 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ - 54.24 (d, ³ $J_{\rm HF} = 8.33$ Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₁H₁₀NOF₃Br [M+H]⁺ 307.9898, found: 307.9897.

(E)-N-(1-(2-chlorophenyl)-3,3,3-trifluoroprop-1-enyl)acetamide:

7.90 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.8, 104.5 (q, J = 34.86Hz), 122.6, 125.2, 126.9, 129.9, 130.9 (d, J = 1.45 Hz), 131.1, 132.7, 133.3, 140.8 (q, J = 5.95 Hz), 169.1 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -56.17 (d, ${}^{3}J_{\text{HF}} = 8.19 \text{ Hz}, 3\text{F}$) ppm; **HRMS (ESI, m/z):** calcd for C₁₁H₁₀NOF₃Cl [M+H]⁺ 264.0403, found: 264.0395.

(E)-N-(3,3,3-trifluoro-1-(naphthalen-2-yl)prop-1-enyl)acetamide:

Yield: 83%; White solid. m.p. = 153-155 °C; ¹H NMR NHCOMe (400 MHz, CDCl₃): δ 2.07 (s, 3H), 6.79 (s, 1H), 7.12 (q, ${}^{3}J_{\text{HF}} = 8.25$ Hz, 1H), 7.41 (dd, $J_{1} = 8.44$ Hz, $J_{2} = 1.56$ Hz, ĊF₃ 1H), 7.53-7.59 (m, 2H), 7.84-7.90 (m, 4H) ppm; ¹³C NMR 30 (100 MHz, CDCl₃): δ 24.9, 103.3 (q, J = 34.74 Hz), 122.9, 125.2 (d, J = 1.31Hz), 125.6, 126.9, 127.3, 127.8, 127.9 (d, J = 1.51 Hz), 128.3, 128.5, 132.2, 132.7, 133.5, 143.7 (q, J = 5.85 Hz), 169.0 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.16 (d, ${}^{3}J_{HF}$ = 8.27 Hz, 3F) ppm; **HRMS** (**ESI, m/z**): calcd for C₁₅H₁₃NOF₃ [M+H]⁺ 280.0949, found: 280.0946.

(E)-N-(3,3,3-trifluoro-1-(thiophen-2-yl)prop-1-enyl)acetamide:

Yield: 40%; Light yellow solid. m.p. = 134-136 °C; ¹H NMR NHCOMe (400 MHz, CDCl₃): δ 2.12 (s, 3H), 6.79 (s, 1H), 7.05-7.07 (m, 2H), 7.25 (d, J = 3.48 Hz, 1H), 7.45 (d, J = 4.95 Hz, 1H) ppm; ĊF₃ 3p ¹³C NMR (100 MHz, CDCl₃): 24.9, 105.3 (q, J = 35.34 Hz),

122.6, 125.3, 127.3, 127.9, 129.8 (d, *J* = 2.06 Hz), 134.4, 136.9 (q, *J* = 6.49 Hz), 168.7 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.69 (d, ³J_{HF} = 8.15 Hz, 3F) ppm; **HRMS (ESI, m/z):** calcd for $C_9H_9NOF_3S[M+H]^+$ 236.0357, found: 236.0357.

N-(2-(trifluoromethyl)-1H-inden-3-yl)acetamide:

CF₃ 3q

NHCOMe Yield: 87%; White solid. m.p. = 173-175 °C; ¹H NMR (400) **MHz**, **CDCl**₃): δ 2.20 (s, 3H), 3.54 (s, 2H), 7.30-7.34 (m, 2H), 7.40-7.45 (m, 2H), 7.50 (s, 1H) ppm; ¹³C NMR (100 MHz, **CDCl₃**): δ 23.4, 35.4, 121.9, 122.8, 124.0, 124.6, 126.7, 127.7,

139.2, 140.3 (q, J = 4.35 Hz), 140.9, 168.9 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -59.69 (s, 3F) ppm; **HRMS** (ESI, m/z): calcd for $C_{12}H_{11}NOF_3$ [M+H]⁺ 242.0793, found: 242.0795.

N-(5-methyl-2-(trifluoromethyl)-1H-inden-3-yl)acetamide:

NHCOMe Me GF_3 GF_3

(E)-N-(1,1,1-trifluoro-5-phenylpent-2-en-3-yl)acetamide:

NHCOMe Yield: 60%; White solid. m.p. = 77-79 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.8 (s, 3H), 2.60(t, J = 7.38 Hz, 2H), 2.88 (t, J = 7.39 Hz, 2H), 6.21 (s, 1H), 6.76 (q, ³J_{HF} = 8.75 Hz, 1H), 7.2-7.29 (m, 3H), 7.32-7.36 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.6, 33.9, 34.9, 102.3 (q, J = 35.07 Hz), 123.7, 126.4, 126.8, 128.4, 128.9, 140.1, 144.7 (q, J = 5.90 Hz), 168.9 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -54.84 (d, ³J_{HF} = 8.74 Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₃H₁₅NOF₃ [M+H]⁺ 258.1106, found: 258.1107.

Reactivity profile of β -substituted acyclic enamides toward Tognis' reagent 1.

When 2t was reacted with Tognis' reagent 1 with the optimized reaction condition for olefinic trifluoromethylation, the α -trifluoromethyl imine 3t' was formed instead of the expected product 3t. We surmise the reactivity difference between acylic enamide 2t and cyclic enamides 2q and 2r could be attributed to the steric repulsion (which makes the 3t unfavorable) and thermodynamic stability of endo alkene skeleton in the case of cyclic substrates or ring strain (which promotes the 1,3-hydrogen shift to afford 3q and 3r).

When 2t was reacted with Tognis' reagent 1 with the optimized reaction condition for oxytrifluoromethylation the desired product 4t was formed in almost quantitative yield.

Control experiments

1) Follow Wang's method for the generation of TEMPO-CF_{3.}^[3]

The ¹⁹F NMR of Tognis' reagent **1** and TEMPO-CF₃

[3] X. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu, Y. Zhang and J. Wang, J. Am. Chem. Soc., 2011, 133, 16410.

2) TEMPO as radical scavenger

General procedure: An oven-dried 5mL Schlenk tube was charged with Tognis' regent **1** (0.11 mmol), **2a** (0.1 mmol), Cu(MeCN)₄PF₆ (0.01 mmol) in sequence. The Schlenk tube was vacuumed and backfilled with nitrogen for three times followed by adding TEMPO (0.11 mmol) and anhydrous THF (0.5 mL) through syringe and then closed tightly. After stirring at room temperature for 20 hours the solvent was evaporated and the crude mixture was dissolved in CDCl₃ for ¹⁹F (decoupled) analysis.

The above crude mixture was washed with saturated NaHCO₃ solution (20 mL) and extracted with dichloromethane (2x20 mL). After evaporation of organic solvent, the crude product was subjected to vacuum and the resulting mixture was dissolved in CDCl₃ for ¹⁹F (non-decoupled) analysis.

3) BHT as radical scavenger

General procedure: An oven-dried 5mL Schlenk tube was charged with Tognis' regent **1** (0.11 mmol), **2a** (0.1 mmol), Cu(MeCN)₄PF₆ (0.01 mmol), BHT (0.11 mmol) in sequence. The Schlenk tube was vacuumed and backfilled with nitrogen for three times followed by adding anhydrous THF (0.5 mL) through syringe and then closed tightly. After stirring at room temperature for 20 hours, saturated NaHCO₃ solution (20 mL) was added and the resulting mixture was extracted with dichloromethane (2x20 mL). Removal of the solvent in vacuo and purification of the residue by silica gel column chromatography afforded the desired product **3a** (88% yield).

4) CuCl₂ as catalyst

General procedure: An oven-dried 5mL Schlenk tube was charged with Tognis' regent **1** (0.11 mmol), **2a** (0.1 mmol), CuCl₂ (0.01 mmol) in sequence. The Schlenk tube was vacuumed and backfilled with nitrogen for three times followed by adding anhydrous THF (0.5 mL) through syringe and then closed tightly. After stirring at room temperature for 20 hours the solvent was evaporated and the crude mixture was dissolved in CDCl₃ for ¹⁹F (non-decoupled) analysis.

Copper-catalyzed oxytrifluoromethylation of enamides

General reaction scheme

Synthetic procedure: An oven-dried 5mL Schlenk tube was charged with Tognis' regent **1** (0.11 mmol), **2** (0.1 mmol), CuCl (0.01 mmol) in sequence. The Schlenk tube was vacuumed and backfilled with nitrogen for three times followed by adding anhydrous MeOH (0.5 mL) through syringe and then closed tightly. After stirring at room temperature for 20 hours, saturated NaHCO₃ solution (20 mL) was added and the resulting mixture was extracted with dichloromethane (2x20 mL). Removal of the solvent in vacuo afforded the desired product **4**, which is pure enough for NMR characterization.

Characterization of products

N-(3,3,3-trifluoro-1-methoxy-1-phenylpropyl)acetamide:

MeOCHN OMe Ph CF₃ ¹H NMR (400 MHz, CDCl₃): δ 2.50 (s, 3H), 3.10 (s, 3H), 3.28-3.37 (m, 1H), 3.42-3.51 (m, 1H), 6.32 (s, 1H), 7.35-7.44 (m, 5H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.0, 40.4 (q, J = 26.81 Hz), 49.9, 86.5 (d, J = 2.82 Hz), 123.5, 125.9, 126.3, 128.6, 128.8, 138.9, 170.2 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -62.98 (t, ³J_{HF} = 10.19 Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₂H₁₄NO₂F₃Na [M+Na]⁺ 284.0874, found: 284.0878.

N-(3,3,3-trifluoro-1-methoxy-1-m-tolylpropyl)acetamide:

MeOCHN OMe CF_3 Me MeMe **NMR (282 MHz, CDCl₃):** δ -61.78 (t, ³*J*_{HF} = 10.50 Hz, 3F) ppm; **HRMS (ESI, m/z):** calcd for C₁₃H₁₆NO₂F₃Na [M+Na]⁺ 298.1031, found: 298.1035.

N-(1-(biphenyl-4-yl)-3,3,3-trifluoro-1-methoxypropyl)acetamide:

¹H NMR (400 MHz, CDCl₃): δ 2.09 (s, 3H), 3.14 (s, 3H), 3.32-3.56 (m, 2H), 6.23 (s, 1H), 7.34-7.38 (m, 1H), 7.43-7.50 (m, 4H), 7.58-7.64 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl) δ 24.1 40.2 (c, L) 26 (0, Hz) 50.0 (0, 5)

^{4g} MHz, CDCl₃): δ 24.1, 40.2 (q, J = 26.68 Hz), 50.0, 86.5, 123.6, 126.3, 126.4, 127.1, 127.3, 127.7, 128.8, 137.9, 140.1, 141.6, 170.1 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -61.62 (t, ${}^{3}J_{HF} = 10.46$ Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₈H₁₈NO₂F₃Na [M+Na]⁺ 360.1187, found: 360.1185.

N-(3,3,3-trifluoro-1-methoxy-1-(4(trifluoromethyl)phenyl)propyl)acetamide:

¹H NMR (400 MHz, CDCl₃): δ 2.06 (s, 3H), 3.14 (s, 3H), 3.32-3.43 (m, 2H), 6.23 (s, 1H), 7.58 (d, J = 8.36 Hz, 2H), 7.67 (d, J = 8.36 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.0, 39.8 (q, J = 26.86 Hz), 50.3, 86.3 (d, J =

2.83Hz), 122.4, 123.3, 125.1, 125.6 (q, J = 3.62 Hz), 126.1, 126.6, 131.0 (q, J = 32.62 Hz), 143.2, 170.0 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -61.61 (t, ³ $J_{HF} = 10.35$ Hz, 3F), -63.76 (s, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₃H₁₃NO₂F₆Na [M+Na]⁺ 352.0748, found: 352.0757.

N-(1-(4-acetylphenyl)-3,3,3-trifluoro-1-methoxypropyl)acetamide:

¹H NMR (400 MHz, CDCl₃): δ 2.09 (s, 3H), 2.61 (s, 3H), 3.15 (s, 3H), 3.38 (q, J = 10.38 Hz, 2H), 6.34 (s, 1H), 7.56 (d, J = 8.42 Hz, 2H), 7.97 (d, J = 8.44 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.0, 26.6, 39.9 (q, J = 27.02Hz), 50.2, 86.3 (d, J = 2.83 Hz), 123.4, 126.1, 126.4, 128.6,

137.2, 144.2, 170.0, 197.5 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -61.60 (t, ³*J*_{HF} = 10.35 Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₄H₁₆NO₃F₃Na [M+Na]⁺ 326.0980, found: 326.0986.

N-(1-(4-cyanophenyl)-3,3,3-trifluoro-1-methoxypropyl) acetamide:

3.05 Hz), 112.7, 118.2, 127.0, 132.4, 144.6, 169.9 ppm; ¹⁹F NMR (**282 MHz**, **CDCl₃**): δ -61.51 (t, ³*J*_{HF} = 10.28 Hz, 3F) ppm; **HRMS (ESI, m/z)**: calcd for C₁₃H₁₃N₂O₂F₃Na [M+Na]⁺ 309.0827, found: 309.0829.

N-(3,3,3-trifluoro-1-methoxy-1-(4(methylsulfonyl)phenyl)propyl)acetamide:

MeOCHN OMe CF_3 MeO_2S 4kMeOCHN OMe CF_3 H NMR (400 MHz, CDCl₃): δ 2.09 (s, 3H), 3.06 (s, 3H), 3.17 (s, 3H), 3.27-3.43 (m, 2H), 6.51 (s, 1H), 7.68 (d, J = 8.50 Hz, 2H), 7.90 (d, J = 8.48 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.0, 40.1 (q, J = 27.12)

Hz), 44.4, 50.4, 86.1 (d, J = 2.67 Hz), 123.2, 126.0, 127.4, 127.5, 140.5, 145.7, 170.3 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -61.45 (t, ³ $J_{\rm HF} = 10.32$ Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₃H₁₆NO₄F₃SNa [M+Na]⁺ 362.0650, found: 362.0655.

N-(3,3,3-trifluoro-1-(4-fluorophenyl)-1-methoxypropyl)acetamide:

¹H NMR (400 MHz, CDCl₃): δ 2.07 (s, 3H), 3.11 (s, 3H), 3.31-3.44 (m, 2H), 6.15 (s, 1H), 7.07-7.11 (m, 2H), 7.40-7.44 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.1, 40.1 (q, J = 26.98 Hz), 50.0, 86.3 (d, J = 2.88 Hz), 115.5,

¹⁹F NMR (282 MHz, CDCl₃): δ -61.75 (t, ${}^{3}J_{HF} = 10.48$ Hz, 3F), -113.89--113.94 (m, 1F) ppm; HRMS (ESI, m/z): calcd for C₁₂H₁₃NO₂F₄Na [M+Na]⁺ 302.0780, found: 302.0779.

N-(1-(4-bromophenyl)-3,3,3-trifluoro-1-methoxypropyl)acetamide:

MeOCHN OMe GF₃ ¹H NMR (400 MHz, CDCl₃): δ 2.06 (s, 3H), 3.11 (s, 3H), 3.29-3.43 (m, 2H), 6.17 (s, 1H), 7.31 (d, J = 8.52 Hz, 2H), 7.53 (d, J = 8.64 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.1, 39.8 (q, J = 26.88 Hz), 50.1, 86.3 (d, J = 2.14 Hz), 123.1, 123.4, 126.2, 127.8, 131.8, 138.3, 170.0 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -61.66 (t, ³ $J_{HF} = 10.46$ Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₂H₁₃NO₂F₃NaBr [M+Na]⁺ 361.9979, found: 361.9986.

N-(3,3,3-trifluoro-1-methoxy-1-(naphthalen-2-yl)propyl)acetamide:

¹H NMR (400 MHz, CDCl₃): δ 2.10 (s, 3H), 3.13 (s, 3H), 3.40-3.64 (m, 2H), 6.31 (s, 1H), 7.50-7.54 (m, 3H), 7.84-7.89 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.2,

39.9 (q, J = 26.96 Hz), 50.1, 86.7 (d, J = 2.71 Hz), 123.2, 125.5, 126.6, 126.9, 127.6, 128.4, 128.8, 132.8, 133.2, 136.4, 170.0 ppm; ¹⁹F NMR (**282 MHz, CDCl₃**): δ -61.69 (t, ³ $J_{HF} = 10.64$ Hz, 3F) ppm; **HRMS (ESI, m/z)**: calcd for C₁₆H₁₆NO₂F₃Na [M+Na]⁺ 334.1031, found: 334.1045.

N-(3,3,3-trifluoro-1-methoxy-1-(thiophen-2-yl)propyl)acetamide:

^{MeOCHN} OMe S 4p ^IH NMR (400 MHz, CDCl₃): δ 2.06 (s, 3H), 3.15 (s, 3H), $^{3.39-3.55}$ (m, 2H), 6.23 (s, 1H), 6.98-7.00 (m, 1H), 7.07 (d, J 4p (100 MHz, CDCl₃): δ 24.0, 39.7 (q, J = 26.89 Hz), 50.1, 85.1 (d, J = 3.08 Hz), 123.4, 126.0, 126.1, 126.6, 126.8, 128.9, 143.9, 169.8 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -62.36 (t, $^{3}J_{HF} = 10.35$ Hz, 3F) ppm; HRMS (ESI, m/z): calcd for C₁₀H₁₂NO₂F₃NaS [M+Na]⁺ 290.0439, found: 290.0439.

N-(1,1,1-trifluoro-3-methoxy-5-phenylpentan-3-yl)acetamide:

 $\begin{array}{c} \text{MeOCHN} & \text{OMe} \\ \text{Ph} & \text{CF}_3 \end{array} \begin{array}{c} ^{1}\text{H} \text{ NMR} (400 \text{ MHz, CDCl}_3): \delta 1.95 (s, 3H), 2.02-2.11 (m, 1H), 2.28-2.36 (m, 1H), 2.63 (t, J = 8.40 \text{ Hz}, 2H), 2.88-3.00 \\ (m, 1H), 3.12-3.21 (m, 1H), 3.28 (s, 3H), 5.60 (s, 1H), 7.17-14 22 (m, 2H), 7.27, 7.21 (m, 2H), \text{ppm} \end{array}$

7.22 (m, 3H), 7.27-7.31 (m, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 24.0, 28.7, 35.8, 35.9 (q, J = 26.65 Hz), 48.8, 85.9 (d, J = 2.35 Hz), 123.8, 126.2, 126.5, 128.3, 128.6, 140.8, 169.7 ppm; ¹⁹F NMR (282 MHz, CDCl₃): δ -62.38 (t, ³ $J_{\rm HF} = 11.00$ Hz, 3F) ppm; **HRMS (ESI, m/z):** calcd for C₁₄H₁₈NO₂F₃Na [M+Na]⁺ 312.1187, found: 312.1187.

¹H and ¹³C NMR spectra of products

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2012

3n

3р

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2012

X-ray data

Table 1. Crystal data and structure refinement for ltp230s.

Identification code	ltp230s	
Empirical formula	C12 H9 F3 N2 O	
Formula weight	254.21	
Temperature	103(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/n	
Unit cell dimensions	a = 6.2648(2) Å	α= 90°.
	b = 8.9839(3) Å	$\beta = 95.4600(10)^{\circ}.$
	c = 20.5622(5) Å	$\gamma = 90^{\circ}.$
Volume	1152.04(6) Å ³	
Z	4	
Density (calculated)	1.466 Mg/m ³	
Absorption coefficient	0.128 mm ⁻¹	
F(000)	520	
Crystal size	0.40 x 0.38 x 0.10 mm ³	
Theta range for data collection	1.99 to 29.64°.	
Index ranges	-6<=h<=8, -12<=k<=12, -28<	=1<=28
Reflections collected	9979	
Independent reflections	3206 [R(int) = 0.0299]	
Completeness to theta = 29.64°	98.2 %	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9873 and 0.9504
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3206 / 0 / 164
Goodness-of-fit on F ²	1.088
Final R indices [I>2sigma(I)]	R1 = 0.0454, wR2 = 0.1258
R indices (all data)	R1 = 0.0588, wR2 = 0.1427
Largest diff. peak and hole	0.436 and -0.477 e.Å ⁻³

	X	У	Z	U(eq)
C(1)	2335(2)	3918(2)	5049(1)	20(1)
C(2)	1971(2)	2700(2)	4591(1)	17(1)
C(3)	3519(2)	2363(2)	4171(1)	18(1)
C(4)	3119(2)	1225(2)	3719(1)	16(1)
C(5)	1197(2)	445(2)	3682(1)	13(1)
C(6)	-345(2)	795(2)	4105(1)	16(1)
C(7)	46(2)	1913(2)	4564(1)	17(1)
C(8)	742(2)	-714(2)	3167(1)	13(1)
C(9)	-2167(2)	-1271(2)	2293(1)	14(1)
C(10)	-4101(2)	-586(2)	1926(1)	20(1)
C(11)	1903(2)	-1950(2)	3114(1)	16(1)
C(12)	3654(2)	-2471(2)	3597(1)	18(1)
F(1)	3469(2)	-2072(1)	4214(1)	29(1)
F(2)	5610(2)	-1995(2)	3469(1)	35(1)
F(3)	3757(2)	-3957(1)	3586(1)	39(1)
N(1)	2606(2)	4890(2)	5404(1)	27(1)
N(2)	-1036(2)	-347(1)	2730(1)	14(1)
O(1)	-1653(2)	-2569(1)	2212(1)	17(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for ltp230s. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-N(1)	1.141(2)
C(1)-C(2)	1.448(2)
C(2)-C(3)	1.391(2)
C(2)-C(7)	1.395(2)
C(3)-C(4)	1.388(2)
C(3)-H(3)	0.9500
C(4)-C(5)	1.390(2)
C(4)-H(4)	0.9500
C(5)-C(6)	1.3962(19)
C(5)-C(8)	1.4927(18)
C(6)-C(7)	1.384(2)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-C(11)	1.338(2)
C(8)-N(2)	1.4020(17)
C(9)-O(1)	1.2255(18)
C(9)-N(2)	1.3699(18)
C(9)-C(10)	1.498(2)
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-C(12)	1.483(2)
C(11)-H(11)	0.9500
C(12)-F(1)	1.3348(17)
C(12)-F(3)	1.3368(18)
C(12)-F(2)	1.3469(18)
N(2)-H(2)	0.8800
N(1)-C(1)-C(2)	179.10(18)
C(3)-C(2)-C(7)	121.12(13)
C(3)-C(2)-C(1)	119.49(14)
C(7)-C(2)-C(1)	119.36(13)
C(4)-C(3)-C(2)	118.92(14)
C(4)-C(3)-H(3)	120.5
C(2)-C(3)-H(3)	120.5
C(3)-C(4)-C(5)	120.56(13)

Table 3. Bond lengths [Å] and angles [°] for ltp230s.

C(3)-C(4)-H(4)	119.7
C(5)-C(4)-H(4)	119.7
C(4)-C(5)-C(6)	119.94(13)
C(4)-C(5)-C(8)	119.80(12)
C(6)-C(5)-C(8)	120.18(12)
C(7)-C(6)-C(5)	120.06(13)
C(7)-C(6)-H(6)	120.0
C(5)-C(6)-H(6)	120.0
C(6)-C(7)-C(2)	119.38(13)
C(6)-C(7)-H(7)	120.3
C(2)-C(7)-H(7)	120.3
C(11)-C(8)-N(2)	123.20(13)
C(11)-C(8)-C(5)	124.64(12)
N(2)-C(8)-C(5)	112.14(12)
O(1)-C(9)-N(2)	122.68(13)
O(1)-C(9)-C(10)	122.17(13)
N(2)-C(9)-C(10)	115.15(13)
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(8)-C(11)-C(12)	125.46(13)
C(8)-C(11)-H(11)	117.3
C(12)-C(11)-H(11)	117.3
F(1)-C(12)-F(3)	106.95(13)
F(1)-C(12)-F(2)	105.23(12)
F(3)-C(12)-F(2)	105.50(13)
F(1)-C(12)-C(11)	115.27(12)
F(3)-C(12)-C(11)	109.77(12)
F(2)-C(12)-C(11)	113.46(12)
C(9)-N(2)-C(8)	127.41(13)
C(9)-N(2)-H(2)	116.3
C(8)-N(2)-H(2)	116.3

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	19(1)	20(1)	21(1)	-4(1)	-4(1)	3(1)
C(2)	20(1)	14(1)	16(1)	-2(1)	-4(1)	3(1)
C(3)	15(1)	16(1)	23(1)	-2(1)	-3(1)	-2(1)
C(4)	15(1)	14(1)	18(1)	-1(1)	2(1)	0(1)
C(5)	15(1)	10(1)	13(1)	0(1)	-1(1)	0(1)
C(6)	16(1)	14(1)	17(1)	1(1)	2(1)	-1(1)
C(7)	19(1)	18(1)	15(1)	0(1)	3(1)	2(1)
C(8)	13(1)	12(1)	13(1)	1(1)	1(1)	-3(1)
C(9)	17(1)	12(1)	14(1)	0(1)	2(1)	-2(1)
C(10)	22(1)	16(1)	21(1)	-3(1)	-6(1)	3(1)
C(11)	16(1)	14(1)	19(1)	-2(1)	0(1)	0(1)
C(12)	17(1)	15(1)	21(1)	0(1)	2(1)	2(1)
F(1)	32(1)	37(1)	18(1)	2(1)	0(1)	14(1)
F(2)	15(1)	54(1)	34(1)	13(1)	1(1)	-1(1)
F(3)	41(1)	15(1)	55(1)	-2(1)	-21(1)	8(1)
N(1)	24(1)	26(1)	30(1)	-10(1)	-6(1)	5(1)
N(2)	16(1)	8(1)	17(1)	-1(1)	-2(1)	1(1)
O(1)	20(1)	11(1)	21(1)	-3(1)	0(1)	0(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for ltp230s. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	у	Z	U(eq)
H(3)	4829	2902	4194	22
H(4)	4169	979	3432	19
H(6)	-1663	266	4078	19
H(7)	-987	2141	4859	21
H(10A)	-4505	-1166	1529	30
H(10B)	-3771	438	1805	30
H(10C)	-5292	-582	2202	30
H(11)	1581	-2544	2735	19
H(2)	-1475	582	2737	17

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for ltp230s.