Electronic Supplementary Information

Bond-Energy Decoupling: Principle and Application to Heterogeneous Catalysis

Bing Huang, Lin Zhuang $^{\ast},$ Li Xiao, Juntao Lu

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

lzhuang@whu.edu.cn

Supplementary figures

Figure S1 Correlation between the energy factor (ε) and the Allen electronegativity which represents the average energy of valence electrons.

Figure S2 Correlation between the energy factor (ε) and the work function of 25 transition metal surfaces here studied (Table 1).

Supplementary tables

bond	bond energy (eV)	bond	bond energy (eV)
Н-Н	4.478	tC_4H_9 - tC_4H_9	3.305
F-F	1.605	C_6H_5 - C_6H_5	4.921
Cl-Cl	2.473	$C_6H_5CH_2$ - $CH_2C_6H_5$	2.788
Br-Br	1.970	$C_{6}F_{5}$ - $C_{6}F_{5}$	5.022
I-I	1.539	S-S	2.168
0-0	1.401	HS-SH	2.767
НО-ОН	2.144	CH ₃ S-SCH ₃	2.788
CH ₃ O-OCH ₃	1.696	HCC-CCH	6.908
N-N	1.626	CH ₂ CH-CHCH ₂	5.030
NH ₂ -NH ₂	2.832	B-B	3.048
C-C	3.565	Si-Si	1.791
CH ₃ -CH ₃	3.872	SiH ₃ -SiH ₃	3.288
CH ₃ CO-COCH ₃	3.144	P-P	2.186
C_2H_5 - C_2H_5	3.725	As-As	1.353
$iC_3H_7-iC_3H_7$	3.625	Se-Se	1.869
F-N	2.759	F-CH ₃	4.732
H-N	4.012	HO-SH	3.002
I-COCH ₃	2.273	$HO-C_2H_5$	4.017
I-OH	2.174	F-CHCH ₂	5.327
NH ₂ -COCH ₃	4.259	F-Cl	2.665
F-I	2.776	H-COCH ₃	3.838
Br-OH	2.134	F-Si	5.569
OCH ₃ -COCH ₃	4.360	CH ₃ O-C ₂ H ₅	3.643
I-B	2.758	$F-C_2H_5$	4.599
F-COCH ₃	5.265	Br-As	2.412
Br-Se	2.303	Cl-OH	2.382
F-O	1.879	Br-O	1.962
HO-COCH ₃	4.723	NH_2 - C_6H_5	4.411
H-CH ₃	4.515	$F-C_6F_5$	4.989
$H-tC_4H_9$	4.112	I-As	1.766
H-F	5.866	NH_2 - $CH_2C_6H_5$	3.141
Cl-COCH ₃	3.631	F-S	3.657
Br-COCH ₃	2.988	COCH ₃ - <i>i</i> C ₃ H ₇	3.488
$HO-C_6F_5$	4.594	H-P	3.275
Cl-CCH	4.477	Br-CH ₃	3.010
H-OCH ₃	4.524	$Cl-tC_4H_9$	3.609
H-CCH	5.743	Br-P	2.798
$F-tC_4H_9$	5.101	CH ₃ -B	3.834
F-OH	2.191	CH ₃ CO-CH ₂ C ₆ H ₅	3.068

Table S1 The bond energy of 175 single bonds collected from the literature.¹¹⁻¹³

Br-C ₆ H ₅	3.449	CH ₃ O-C ₆ H ₅	4.303
Cl-SiH ₃	4.709	HO-CH ₃	3.952
C_6H_5 - $CH_2C_6H_5$	3.939	Cl-C	3.366
CH ₃ CO-C ₆ H ₅	4.177	I-C	2.451
CH ₃ -SiH ₃	3.849	H-S	3.479
F-Br	2.864	F-B	6.647
H-CH ₂ C ₆ H ₅	3.854	CH ₃ O- <i>i</i> C ₃ H ₇	3.700
F-NH ₂	2.932	Cl-CH ₂ C ₆ H ₅	3.070
CH_3 - tC_4H_9	3.730	$H-NH_2$	4.627
CH ₃ CO- <i>t</i> C ₄ H ₉	3.375	HO-CH ₂ C ₆ H ₅	3.425
$CH_3O-tC_4H_9$	3.622	CH ₃ - <i>i</i> C ₃ H ₇	3.786
$H-C_6F_5$	5.014	Br-S	2.161
H-SCH ₃	3.752	Cl-I	2.152
Br-CHCH ₂	3.468	Cl-As	2.950
$H-iC_3H_7$	4.217	Br-B	3.735
H-Se	3.319	Cl-O	2.065
tC ₄ H ₉ -SH	3.084	Cl-Br	2.235
Br-CH ₂ C ₆ H ₅	2.442	CH ₃ -CH ₂ C ₆ H ₅	3.331
$H-C_2H_5$	4.320	CH ₃ CO-C ₂ H ₅	3.562
Cl-B	4.590	H-B	3.797
OH-C ₆ H ₅	4.767	$HO-iC_3H_7$	4.086
Cl-C ₆ F ₅	3.935	$HO-tC_4H_9$	4.090
H-I	3.053	F-CCH	5.365
NH_2 - <i>i</i> C_3H_7	3.669	F-P	5.107
$F-iC_3H_7$	4.976	$\text{Cl-}i\text{C}_3\text{H}_7$	3.631
$F-C_6H_5CH_2$	4.240	Cl-CH ₃	3.592
$H-C_6H_5$	4.856	Cl-N	2.031
Cl-Se	2.619	CH ₃ -COCH ₃	3.609
Cl-Si	3.678	H-Cl	4.433
H-C	4.246	Br-I	1.818
I-Si	2.169	CH ₃ O-CH ₃	3.609
F-SiH ₃	6.574	H-SH	3.913
NH ₂ -CH ₃	3.653	$Br-iC_3H_7$	3.063
CH_3 - C_6F_5	4.515	$Br-tC_4H_9$	2.998
Cl-C ₆ H ₅	4.104	I-SiH ₃	3.061
$Cl-C_2H_5$	3.613	CH_3 - C_6H_5	4.385
H-O	4.758	H-Br	3.757
NH_2 - C_2H_5	3.613	H-OH	5.114
Br-C	2.820	H-Si	3.015
H-CHCH ₂	4.773	OH-OCH ₃	1.922
Cl-CHCH ₂	4.071	F-As	4.788
F-Se	3.553	$Br-C_2H_5$	2.998
Br-CCH	4.217	I-P	2.191
Br-SiH ₃	3.859	HS-SCH ₃	2.781

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2012

Cl-S	2.551	CH_3 - C_2H_5	3.800
HO-SCH ₃	3.111	$F-C_6H_5$	5.408
F-C	4.533	H-SiH ₃	3.939
Br-Si	2.959	Cl-P	3.392
NH_2 - tC_4H_9	3.648		

Table S2 The energy factor (ε) and the phase factor (θ) of 30 reactants involved in Figure 1a.

reactant	$\varepsilon(eV)$	θ (rad)	reactant	$\varepsilon(eV)$	θ (rad)
-H	5.798	0.455	$-tC_4H_9$	6.363	0.369
-F	16.036	0.159	-C ₆ H ₅	7.057	0.431
-Cl	10.768	0.242	$-CH_2C_6H_5$	7.169	0.317
-Br	9.373	0.231	$-C_6F_5$	7.774	0.414
-I	7.908	0.222	-S	7.495	0.272
- O	13.038	0.165	-SH	8.288	0.293
-OH	13.089	0.204	-SCH ₃	7.944	0.301
-OCH ₃	12.639	0.184	-С≡СН	8.979	0.454
-N	9.752	0.206	-CH=CH ₂	7.377	0.425
-NH ₂	10.687	0.260	-B	4.255	0.437
-C	7.383	0.355	-Si	4.336	0.327
-CH ₃	7.324	0.372	-SiH ₃	4.368	0.449
-COCH ₃	5.491	0.388	-P	5.186	0.330
$-C_2H_5$	7.211	0.368	-As	4.897	0.266
<i>-i</i> C ₃ H ₇	6.743	0.375	-Se	7.119	0.259

Table S3 The bond energies of 80 covalent bonds predicted using Eq. 1 and from *ab initio*calculations (Data are plotted in Figure 1b).

bond	predicted	theoretical	bond	predicted	theoretical
	(eV)	(eV)		(eV)	(eV)
CH ₂ CH- <i>i</i> C ₃ H ₇	4.342	4.341	Se-OH	3.000	2.973
CH ₃ S-COCH ₃	3.280	3.276	S-COCH ₃	2.924	2.892
CH ₂ CH-COCH ₃	4.173	4.164	Se-NH ₂	2.661	2.701
CH ₂ CH-CCH	6.006	6.019	$CH_3S-tC_4H_9$	3.150	3.195
SH-N	2.302	2.289	NH ₂ -OCH ₃	2.427	2.380
HS-O	2.703	2.716	HCC-SCH ₃	4.707	4.659
CH ₃ CO-O	4.182	4.167	<i>i</i> C ₃ H ₇ -OCH ₃	3.830	3.775
CH ₃ S-O	2.851	2.833	CH ₃ O-Cl	2.146	2.201
SH-Br	2.419	2.441	B-CHCH ₂	4.326	4.383
CH ₃ S-N	2.368	2.341	CH ₂ CH-NH ₂	4.420	4.362
HS-OH	2.973	3.104	B-OCH ₃	5.208	5.007

SiH ₃ -SCH ₃	3.594	3.726	CH ₃ S-NH ₂	2.864	3.067
CH ₃ S-OH	3.082	3.219	S-OH	3.227	3.016
SH-Cl	2.703	2.842	B-SH	3.944	3.732
CH ₂ CH-OCH ₃	4.367	4.226	CH ₃ S-S	2.727	2.510
HCC-COCH ₃	5.014	5.158	P-SH	2.650	2.870
Se-SH	2.517	2.367	CH ₃ -N	3.181	2.957
CH ₃ O-Br	1.983	2.135	NH ₂ -O	2.489	2.257
CH ₃ S-OCH ₃	2.741	2.893	CH ₃ CO-OCH ₃	4.408	4.163
$B-C_2H_5$	3.671	3.823	SiH ₃ -NH ₂	4.474	4.723
SH-S	2.670	2.512	SiH ₃ -OCH ₃	4.804	5.065
$S-C_2H_5$	3.114	2.951	SiH ₃ -C ₂ H ₅	3.661	3.93
Se-SCH ₃	2.527	2.358	CH ₃ O-O	1.866	1.589
HCC - $i\mathrm{C}_{3}\mathrm{H}_{7}$	5.425	5.252	CH ₂ CH-O	4.454	4.162
$HCC-C_2H_5$	5.448	5.270	C ₂ H ₅ -O	3.872	3.58
B-SCH ₃	3.821	3.633	B-NH ₂	4.938	4.642
CH ₃ CO-OH	4.740	4.547	B-OH	5.721	5.418
SiH ₃ -OH	5.287	5.481	$HCC-tC_4H_9$	5.403	5.098
$tC_4H_9-C_2H_5$	3.769	3.574	Si-SH	3.215	2.907
S-OCH ₃	2.897	2.700	HCC-S	4.564	4.249
HCC-SH	4.713	4.650	S-NH ₂	2.905	2.801
NH ₂ -OH	2.730	2.663	Se-CCH	4.157	4.047
P-OH	4.064	4.133	B-CH ₃	3.801	3.912
SiH ₃ -SH	3.753	3.823	CH ₂ CH-OH	4.734	4.619
S-CH ₃	3.085	3.012	CH ₂ CH-S	3.638	3.518
HS-F	3.548	3.622	HCC-CH ₃	5.471	5.350
P-CCH	4.473	4.549	HS-COCH ₃	3.214	3.336
$iC_3H_7-C_2H_5$	3.808	3.722	CH_2CH - tC_4H_9	4.299	4.177
SiH ₃ -CCH	5.540	5.628	SH-OCH ₃	2.662	2.785
CH ₃ O-F	1.992	1.900	CH ₃ -O	3.734	3.608