Electronic Supplementary Information for:

“Push-no-Pull” Porphyrins for Second Harmonic Generation Imaging

Ismael López-Duarte,† James E. Reeve,† Javier Pérez-Moreno,‡ Igor Boczarow,† Griet Depoter,‡
Jan Fleischhauer,† Koen Clays*† and Harry L. Anderson*†

†Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
‡Department of Chemistry, University of Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium

Email: harry.anderson@chem.ox.ac.uk; koen.clays@fys.kuleuven.be

Table of Contents

1) Synthesis and compound characterization .. S2
 General materials and methods ... S2
 Scheme S1: Synthetic route to 4 ... S2
 Synthetic Procedures ... S2
 Figure S1: 1H NMR spectrum of 4 ... S3
 Figure S2: HPLC trace of 4 .. S3
 Figure S3: ESI+ mass spectrum of 4 ... S4
 Figure S4: 1H NMR spectrum of 6 .. S6
 Figure S5: HPLC trace of 6 .. S6
 Figure S6: ESI+ mass spectrum of 6 ... S7
 Figure S7: 1H NMR spectrum of 7 .. S8
 Figure S8: HPLC trace of 7 .. S8
 Figure S9: ESI+ mass spectrum of 7 ... S9
 Figure S10: UV-Vis spectra of 6 and 7 ... S9
 Figure S11: Cyclic and Square-Wave Voltammograms for 3 S10
 Figure S12: Cyclic and Square-Wave Voltammograms for 3-Zn S11
 Figure S13: Cyclic and Square-Wave Voltammograms for 4 S12
 Figure S14: Cyclic and Square-Wave Voltammograms for 5 S13
 Figure S15: Cyclic and Square-Wave Voltammograms for 5-Zn S14
2) Hyper-Rayleigh Scattering ... S15
3) SHG imaging ... S15
 Figure S16: Tilt angel distribution for 6 in droplet monolayer membranes S15
4) References .. S15
1. Synthesis and compound characterization

1.1 General Materials and Methods

5-Iodopent-1-yne,1 1-iodonaphthalene-3,6-disulfonic acid disodium salt,2 dibromoporphyrin 9-Zn,3 4-iodopyridine,4 porphyrins1, 2, 3, 5 and 13 were prepared as previously described. The manipulation of all air and/or water sensitive compounds was carried out using standard high vacuum techniques. Dichloromethane and THF were obtained either by distillation or by passing through a column of activated alumina. Diisopropylamine was distilled from CaH₂ under nitrogen before use. All other reagents were used as supplied by commercial agents. Analytical thin layer chromatography (TLC) was carried out on Merck® aluminum backed silica gel 60 GF254 plates and visualization when required was achieved using UV light or I₂. Column chromatography was carried out on silica gel 60 GF254 using a positive pressure of nitrogen. Size exclusion chromatography (SEC) was carried out using Bio-BeadsS-X1, 200-400 mesh (Bio-Rad). Where mixtures of solvents were used, ratios reported are by volume. NMR spectra were recorded at ambient probe temperature using either a Bruker DPX400 (400 MHz) or Bruker AVANCE AV500 (500 MHz). Chemical shifts are quoted as parts per million (ppm) relative to the internal signal of the solvent (chloroform/DMSO). UV/Vis spectra were recorded on a Perkin Elmer Lambda 20 UV-Vis. Mass spectra were carried out using Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) and ElectroSpray Ionization (ESI), and only molecular ions and major peaks are reported.

Scheme S1. Synthetic route for porphyrin 4: (i) 4-iodopyridine, Pd₂(db)₃, PPh₃, Cul, toluene, i-Pr₂NH, 30 °C; (ii) MeI, THF; (iii) Dowex 1x8 200 mesh ion-exchange column (DMF).

1.3 Synthetic Procedures

Porphyrin 4. Monodeprotected porphyrin 13 (150 mg, 0.23 mmol), Pd₂(db)₃ (20 mg, 0.02 mmol), PPh₃ (23 mg, 0.09 mmol) and Cul (10 mg, 0.05 mmol) were dried in vacuo for 1 h before toluene (5 mL) and diisopropylamine (5 mL) were added and the mixture freeze-pump-thaw degassed. 4-Iodopyridine (440 mg, 2.15 mmol) was added and the mixture stirred at 30 °C for 3 h under N₂. Upon completion, the mixture was passed through a silica plug (1:1 CHCl₃:THF) then purified by flash chromatography (5:1 CHCl₃:THF) to isolate the desired product. Fractions were evaporated to dryness to give porphyrin 12 as purple wax, (140 mg, 85%). Then, porphyrin 12 (25 mg, 0.035 mmol) was dissolved in THF (2 mL) and MeI (1.0 mL, 16 mmol) was added. After 5 h, all starting material was consumed according to TLC and the product was passed through a Dowex 1x8 200 mesh ion-exchange column (DMF). The resulting solution was precipitated from DMF with toluene and collected by filtration to give porphyrin 4 as an amorphous dark solid, (20 mg, 75%). UV/Vis (DMF): λmax (nm) (ε x 10³ M⁻¹ cm⁻¹) = 437 (180), 590 (58), 671 nm (42). ¹H-NMR (400 MHz, DMSO-d₆): δ (ppm) = 10.52 (s, 2H), 9.97 (d, J = 4.5 Hz, 2H), 9.68 (d, J = 4.5 Hz, 2H), 9.5 (m, 4H), 9.24 (d, J = 6.8 Hz, 2H), 8.96 (d, J = 6.8 Hz, 2H), 4.45 (s, 3H), 1.7 (m, 6H), 1.5 (m, 6H), 1.1 (m, 12H), 0.9 (m, 6H), 0.8 (m, 9H). MS (ESI) m/z 732.4450 (C₄₈H₅₆N₅SiCl, [M-Cl]^+), requires 732.4456, 100%).
Figure S1. 1H NMR spectrum of porphyrin 4 (400 MHz, DMSO-d_6).

Figure S2. HPLC trace of porphyrin 4. Retention time = 13.28 min.
Figure S3. ESI+ mass spectrum of porphyrin 4.

Porphyrin 3-Zn. To a stirred solution of porphyrin 3 (200 mg, 0.21 mmol) in CH$_2$Cl$_2$ (100 mL) a solution of zinc acetate dihydrate (600 mg, 2.73 mmol) in MeOH (8 mL) was added. The reaction mixture was stirred for 45 min, when TLC (CH$_2$Cl$_2$) confirmed completion. The solvent was removed by evaporation and the product was purified by flash chromatography on silica gel using CH$_2$Cl$_2$ as eluent. Fractions were evaporated to dryness to give porphyrin 3-Zn as an amorphous dark solid, (210 mg, 98%).

UV/Vis (DMF): λ_{max} (nm) (ε x 103 M$^{-1}$ cm$^{-1}$) = 431 (157), 650 nm (79).

1H NMR (400 MHz, CDCl$_3$/1% pyridine–d$_5$): δ (ppm) = 10.02 (s, 2H), 9.84 (d, J = 4.4 Hz, 2H), 9.74 (d, J = 4.4 Hz, 2H), 9.30 (d, J = 1.5 Hz, 2H), 9.27 (d, J = 1.5 Hz, 2H), 7.90 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 3.39 (d, J = 7.3 Hz, 4H), 1.9-1.1 (m, 50H), 1.1-0.8 (m, 19H).

MS (ESI) m/z 1018.40 (C$_{64}$H$_{87}$N$_5$SiZn, [M]$^+$ requires 1018.61, 100%).

N,N,N-Triethyl-4-pentyn-1-aminium iodide (10). Triethylamine (3.0 mL, 21 mmol) was added dropwise to a stirred solution of 5-iodopent-1-yne (1.0 g, 5.1 mmol) in diethyl ether (5.0 mL). After stirring for 24 h the precipitate was filtered, washed with diethyl ether and dried in vacuo to give compound 10 as a white powder. (1.2 g, 80%).

1H-NMR (400 MHz, DMSO–d$_6$): δ (ppm) = 3.25 (q, J = 7.2 Hz, 6H), 3.1 (m, 2H), 2.95 (s, 1H), 2.3 (d, 2H), 1.7 (m, 2H), 1.18 (s, J = 6.8 Hz, 9H).

13C-NMR (100 MHz, DMSO–d$_6$): δ (ppm) = 146.56, 145.24, 131.93, 131.31, 129.30, 125.87, 125.82, 125.33, 124.90, 119.29, 102.45, 99.75, 18.53, −0.06. MS (ESI) m/z 168.1745 (C$_{11}$H$_{22}$NI, [M]$^+$ requires 168.1747, 100%).

1-(Trimethylsilyl)ethynynaphthalene-3,6-disulfonic acid disodium salt (11). 1-Iodonaphthalene-3,6-disulfonic acid disodium salt (200 mg, 0.43 mmol), Pd$_2$(dba)$_3$ (20 mg, 22 µmol), triphenylphosphine (33 mg, 126 µmol) and copper(I) iodide (13 mg, 68 µmol) were dried in vacuo for 1 h. Trimethylsilyl acetylene (0.20 mL, 1.4 mmol), DMSO (2.0 mL) and diisopropylamine (1.0 mL) were added by syringe and the solution was degassed by three freeze-thaw cycles and stirred at room temperature for 5 hours under N$_2$. The mixture of solvents was evaporated under vacuum and the product was passed through a celite plug with DMSO as the eluent. After evaporation of the solvent, the residue was suspended in acetone and filtrated, giving the corresponding 1-(trimethylsilyl)ethynynaphthalene-3,6-disulfonic acid disodium salt in 90% yield (170 mg). 1H-NMR (400 MHz, DMSO–d$_6$): δ (ppm) = 8.19 (d, J = 1.6 Hz, 1H), 8.15 (s, 1H), 8.13 (d, J = 8.7 Hz, 1H), 7.87 (d, J = 1.6 Hz, 1H), 7.85 (dd, J = 8.7, J = 1.6 Hz, 1H), 0.33 (s, 3H, SiCH$_3$). 13C-NMR (100 MHz, DMSO–d$_6$): δ (ppm) = 146.56, 145.24, 131.93, 131.31, 129.30, 125.87, 125.82, 125.33, 124.90, 119.29, 102.45, 99.75, 18.53, −0.06. MS (ESI) m/z 404.9902 (C$_{15}$H$_{16}$Na$_2$O$_6$S$_2$Si, [M–Na]$^+$ requires 404.9904, 100%).
Porphyrin 8-Zn. Dibromoporphyrin 9-Zn (820 mg, 0.81 mmol), N,N-dioctylamino-4-trimethylsilyl ethynylbenzene (500 mg, 1.20 mmol), Pd_dba_3 (23 mg, 25 µmol), triphenylphosphine (70 mg, 240 µmol) and copper(I) iodide (25 mg, 120 µmol) were dried in vacuo for 1 h. Toluene (7 mL), diisopropylamine (7 mL) and TBAF (1.0 M in THF, 2.00 mL, 2.00 mmol) were added by syringe and solution was degassed by three freeze–thaw cycles. The reaction mixture was stirred at 50 °C for 2 h under N_2. The reaction mixture was cooled to room temperature and diluted with CH_2Cl_2 (100 mL). The organic solution was washed with saturated ammonium chloride solution (100 mL), water (100 mL) and then dried over Na_2SO_4 and evaporated under vacuum. The green residue was subjected to chromatography on silica gel (50:1 to 25:1 CH_2Cl_2:THF) to give 8-Zn (300 mg, 28%) as a green wax. ^1H NMR (500 MHz, CDCl_3: 1% pyridine–d_5) δ (ppm) = 9.72 (d, J = 4.5 Hz, 2H), 9.59 (d, J = 4.6 Hz, 2H), 8.88 (d, J = 4.5 Hz, 2H), 8.85 (d, J = 4.6 Hz, 2H), 7.86 (d, J = 8.6 Hz, 2H), 7.7 (m, 4H), 7.5 (m, 2H), 7.3 (m, 2H), 6.78 (d, J = 8.8 Hz, 2H), 4.3 (m, 4H), 3.9 (m, 4H), 3.7 (m, 4H), 3.6 (m, 4H), 3.5 (m, 4H), 3.4 (m, 4H), 3.3 (m, 4H, NCH_2), 3.32 (s, 6H, OCH_3), 1.6 (m, 4H), 1.3 (m, 20H), 0.9 (m, 6H). ^13C NMR (125 MHz, CDCl_3: 1% pyridine–d_5) δ (ppm) = 156.97, 152.50, 150.37, 149.81, 149.64, 149.54, 144.16, 135.89, 132.90, 132.70, 132.47, 132.35, 130.96, 127.86, 127.14, 121.56, 121.32, 113.69, 111.50, 109.74, 104.99, 102.24, 98.00, 91.06, 71.86, 70.85, 70.63, 70.52, 69.88, 67.66, 58.96, 51.07, 31.84, 29.51, 29.34, 27.30, 27.18, 22.66, 14.12. MS (MALDI–TOF, DITRANOL) m/z 1267.92 (C_70H_84BrN_5O_8Zn, [M]^+) requires 1267.48, 100%).

Porphyrin 6-Zn. Porphyrin 8-Zn (60 mg, 0.05 mmol), N,N,N-triethyl-4-pentyn-1-aminium iodide (10) (60 mg, 0.2 mmol), Pd_dba_3 (5 mg, 6 µmol), triphenylphosphine (4 mg, 15 µmol) and copper(I) iodide (2 mg, 11 µmol) were dried in vacuo for 1 h. Toluene (3 mL), methanol (0.5 mL) and diisopropylamine (3 mL) were added by syringe and the solution was degassed by three freeze–thaw cycles. The mixture was stirred at 50 °C for 3 h under N_2. The solvent was evaporated and the residue was redissolved in CHCl_3 and passed through a celite plug. After evaporation, the residue was purified by size exclusion chromatography (Bio Beads S-X1, CHCl_3:pyridine 100:1). Compound 6-Zn was isolated in 79% yield (49 mg). ^1H NMR (400 MHz, CDCl_3: 1% pyridine–d_5) δ (ppm) = 9.61 (d, J = 4.5 Hz, 2H), 9.33 (d, J = 4.6 Hz, 2H), 9.33 (d, J = 4.6 Hz, 2H), 8.9 (m, 4H), 7.83 (d, J = 8.6 Hz, 2H), 7.7 (m, 4H), 7.5 (m, 2H), 7.3 (m, 2H), 6.65 (d, J = 8.8 Hz, 2H), 4.3 (m, 4H, OCH_3), 3.9 (m, 4H, OCH_3), 3.7 (m, 4H, OCH_3), 3.6 (m, 4H, OCH_3), 3.5 (m, 4H, OCH_3), 3.4 (m, 4H, OCH_3), 3.3 (m, 4H, NCH_2), 3.25 (s, 6H, OCH_3), 3.0 (m, 2H), 2.7 (m, 2H), 1.5 (m, 6H), 2.4 (m, 6H), 1.2 (m, 22H), 0.9 (m, 6H), 0.6 (m, 9H, CH_3). MS (MALDI–TOF, DITRANOL) m/z 1355.90 (C_61H_105N_5O_8Zn, [M]^+) requires 1356.12, 100%)

Porphyrin 6. Zinc porphyrin 6-Zn (49 mg) was dissolved in a mixture of CHCl_3 (10 mL) and TFA (1.0 mL). After 20 min. stirring at room temperature, the reaction was quenched with NaHCO_3 saturated solution, and the organic layer was washed with water, dried over Na_2SO_4 and evaporated under vacuum. The residue was passed through a Dowex 1×8 200 mesh ion-exchange column (MeOH) and after evaporation, the product was purified by size exclusion chromatography (Bio Beads S-X1, CHCl_3). Compound 6 was isolated in 85% yield (37 mg). UV/Vis (DMF): λ_max (nm) (ε, x 10^4 M^−1 cm^−1) = 428 (122), 621 (34), 705 nm (25). ^1H NMR (400 MHz, CDCl_3) δ (ppm) = 9.63 (d, J = 4.5 Hz, 2H), 9.37 (d, J = 4.6 Hz, 2H), 8.8 (m, 4H), 7.82 (d, J = 8.6 Hz, 2H), 7.7 (m, 4H), 7.63 (t, J = 8.0 Hz, 2H), 7.34 (m, 2H), 6.76 (d, J = 8.8 Hz, 2H), 4.3 (m, 4H, OCH_3), 3.9 (m, 4H, OCH_3), 3.7 (m, 4H, OCH_3), 3.6 (m, 4H, OCH_3), 3.5 (m, 4H, OCH_3), 3.4 (m, 4H, NCH_2), 3.25 (s, 6H, OCH_3), 2.8 (m, 6H; CH_2), 2.0 (m, 2H), 1.6 (m, 4H), 1.3 (m, 24H), 1.1 (m, 9H, CH_3), 0.9 (m, 6H, CH_3), -1.98 (s, 2H, NH). ^13C NMR (100 MHz, DMSO-d_6) δ (ppm) = 162.33, 153.66, 146.92, 138.39, 137.21, 133.32, 132.41, 126.45, 125.96, 119.72, 116.69, 112.55, 108.12, 106.14, 105.21, 102.30, 94.90, 87.68, 76.40, 75.18, 74.98, 74.75, 74.24, 72.70, 63.14, 60.66, 57.41, 55.21, 45.29, 36.41, 37.43, 33.89, 31.95, 31.55, 27.25, 26.12, 22.15, 19.12, 12.42, 12.33. MS (ESI) m/z 1291.8148 (C_61H_105N_5O_8Cl, [M–Cl]^+) requires 1291.8145, 100%).
Figure S4. 1H NMR spectrum of porphyrin 6 (400 MHz, DMSO-d_6).

Figure S5. HPLC trace of porphyrin 6. Retention time = 12.41 min.
Figure S6. ESI+ mass spectrum of porphyrin 6.

Porphyrin 7-Zn. Porphyrin 8-Zn (60 mg, 0.05 mmol), 1-(trimethylsilyl)ethynylnaphthalene-3,6-disulfonic acid (60 mg, 0.14 mmol) (11), Pd2(dba)3 (5 mg, 6 µmol), triphenylphosphine (4 mg, 15 µmol) and copper(I) iodide (2 mg, 11 µmol) were dried in vacuo for 1 h. DMSO (2 mL), diisopropylamine (2 mL) and TBAF (1.0 M in THF, 0.2 mL, 0.2 mmol) were added by syringe and the solution was degassed by three freeze-thaw cycles. The mixture was stirred at 40 °C for 3 hours under N2. The mixture of solvents was evaporated under vacuum and the solid residue was dissolved in CHCl3 and passed through a celite plug. After evaporation, the residue was further purified by size exclusion chromatography (Bio Beads S-X1, CHCl3:pyridine 100:1). Compound 7-Zn was obtained as a green solid in 62% yield (48 mg).

1H NMR (400 MHz, CDCl3/1% pyridine–d5) δ (ppm) = 9.98 (d, J = 4.5 Hz, 2H), 9.69 (d, J = 4.6 Hz, 2H), 8.96 (d, J = 4.5 Hz, 2H), 8.8 (m, 2H), 8.53 (m, 1H), 8.36 (s, 2H), 8.16 (d, J = 8.6 Hz, 1H), 7.8 (m, 8H), 7.48 (d, J = 8.6 Hz, 1H), 6.82 (d, J = 8.6 Hz, 2H), 4.3 (m, 4H, OCH2), 3.9 (m, 4H, OCH2), 3.7 (m, 4H, OCH2), 3.6 (m, 4H, OCH2), 3.5 (m, 4H, OCH2), 3.4 (m, 4H, OCH2), 3.15 (s, 6H, OCH3).

Electronic Supplementary Material (ESI) for Chemical Science
This journal is © The Royal Society of Chemistry 2013

13C NMR (100 MHz, DMSO-d6) δ (ppm) = 157.17, 148.44, 147.27, 146.14, 141.69, 133.21, 132.25, 131.80, 129.26, 128.14, 127.25, 126.48, 126.07, 125.43, 121.82, 120.69, 119.86, 114.74, 111.46, 107.3, 107.32, 103.53, 101.22, 99.09, 95.96, 95.15, 89.84, 71.21, 69.99, 69.80, 69.57, 69.07, 67.52, 57.95, 57.46, 50.02, 31.22, 28.84, 28.70, 26.75, 26.35, 23.01, 22.07, 19.16, 13.94, 13.45; MS (ESI) m/z 716.7989 (C82H59N5Na2O14S2Zn, [M-2Na]2 requires 716.8007, 100%).
Figure S7. 1H NMR spectrum of porphyrin 7 (400 MHz, DMSO-d_6).

Figure S8. HPLC trace of porphyrin 7. Retention time = 9.62 min.
Figure S9. ESI+ mass spectrum of porphyrin 7.

Figure S10. UV-vis spectra of 6 and 7 in DMF.
Figure S11. Top: Cyclic voltammogram (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; scan rate 100 mV s$^{-1}$; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode) for porphyrin 3. Square-wave experiments recorded for the same samples (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; square-wave frequency 8 Hz; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode). The gray dashed lines represent the trace in the absence of internal ferrocene while the black lines show the measurements in the presence of ferrocene.
Figure S12. Top: Cyclic voltammogram (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; scan rate 100 mV s$^{-1}$; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode) for porphyrin 3-Zn. Square-wave experiments recorded for the same samples (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; square-wave frequency 8 Hz; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode). The gray dashed lines represent the trace in the absence of internal ferrocene while the black lines show the measurements in the presence of ferrocene.
Figure S13. Top: Cyclic voltammogram (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; scan rate 100 mV s$^{-1}$; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode) for porphyrin 4. Square-wave experiments recorded for the same samples (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; square-wave frequency 8 Hz; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode). The gray dashed lines represent the trace in the absence of internal ferrocene while the black lines show the measurements in the presence of ferrocene.
Figure S14. Top: Cyclic voltammogram (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; scan rate 100 mV s$^{-1}$; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode) for porphyrin 5. Square-wave experiments recorded for the same samples (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; square-wave frequency 8 Hz; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode). The gray dashed lines represent the trace in the absence of internal ferrocene while the black lines show the measurements in the presence of ferrocene.
Figure S15. Top: Cyclic voltammogram (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; scan rate 100 mV s$^{-1}$; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode) for porphyrin 5-Zn. Square-wave experiments recorded for the same samples (CH$_2$Cl$_2$, 0.1 M Bu$_4$NPF$_6$; square-wave frequency 8 Hz; glassy carbon working electrode, Pt counter electrode, Ag/AgNO$_3$ reference electrode). The gray dashed lines represent the trace in the absence of internal ferrocene while the black lines show the measurements in the presence of ferrocene.
2. Hyper-Rayleigh Scattering

Femtosecond hyper-Rayleigh scattering experiments were performed at 800 and 840 nm in dimethylformamide as the solvent. Crystal Violet in methanol was used as the reference, with a value of 338×10^{-30} esu at 800 nm and 405×10^{-30} esu at 840 nm for the octopolar β_{xxx} hyperpolarizability tensor component. Differences in local field factor (from the different solvents) and in geometrical factor (due to octopolar reference and dipolar unknowns) were taken into account. The high-frequency demodulation technique confirmed that there was no multiphoton fluorescence present at the second-harmonic wavelengths of 400 or 420 nm, in agreement with the one-photon spectra. The fluorescence-free hyperpolarizability values could thus be deduced as the average value of the modulation frequencies (80, 160 and 240 MHz).

3. SHG Imaging

Figure S16. Tilt angle distribution for 6 (black) in droplet monolayer model membranes with tilt angle distributions of di-4-ANEPPS (red) and di-8-ANEPPS (blue) for comparison. Light vertical lines represent the tilt angle expectation value, $\langle \phi \rangle$. A typical SHG image of 6 is shown, inset.

The resolution of the dye tilt angle distribution was performed using a previously established method. Porphyrin 6 localizes in membranes with a orientational distribution similar to that of conventional naphthylstyryl ANEPPS dyes, a configuration that is close to optimal for NLO imaging. While the mean tilt of 6 is similar to that of di-8-ANEPPS ($\langle \phi \rangle = 38^\circ$), its ability to occupy a wider range of angles in the membrane cause an expected tilt of $\langle \phi \rangle = 42^\circ$. Analogous dye 7 was not fluorescent enough to find an orientational distribution, however a brief analysis of its SHG images predict a lower tilt with $\langle \phi \rangle = 37^\circ$.

4. References