Supporting information

Redox of Ferrocene Controlled Asymmetric Dehydrogenative Heck Reaction via Palladium-catalyzed dual C- H Bonds Activation

Chao Pi^a, Ying Li^a, Xiuling Cui^{a,b}*, Hao Zhang^a, Yanbing Han^a and Yangjie Wu^a*

^a: Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Department of Chemistry, Zhengzhou University, Zhengzhou, 450052, P.R. China.

^b: Engineenring Research Center of Molecular Medicine of Chinese Education Ministry, Xiamen Key Laboratory of Ocean and Gene Drugs, Institute of Molecular Medicine of Huaqiao University, Fujian, Xiamen, 361021

Table of Contents

General Information	S2
Experimental Procedures	S2-S11
Screening of reaction parameter for the dehydrogenative Heck reaction of	
N,N-dimethylamino methyl ferrocene	S2-S3
General procedure for ortho alkenylation of sp ² C-H Bonds with olenfins	S3-S4
General procedure for enantioselective alkenylation of sp ² C-H Bonds with olefins	S4
Characterization of olefinated products.	S4 – S11
ESI-MS spectrum	S11
References	S 11
NMR Spectra	S12 – S29
HPLC Data	S30 – S46

General Information:

All reagents were used directly without further purification. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. Monoprotected α -amino acids were purchased from GL Biochem (shanghai) Ltd.. ¹H NMR spectra were recorded on a **Bruker DPX-400** (400 MHz) spectrometer with deuteraterated chloroform as solutions. The chemical shifts δ are reported in ppm relative to tetramethylsilane. The multiplicity of signals is designated by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Coupling constants, *J*, are reported in Hertz (Hz). ¹³C NMR spectra were recorded at 100 MHz on **Bruker DPX-400**. The chemical shifts δ are reported relative to residual CHCl₃ (δ_c =77.00 ppm). High resolution mass spectra (HRMS) were obtained on an **Agilent LC- MSD- Trap-XCT** spectrometer with micromass MS software using electrospray ionisation (ESI). Enantiomeric excesses (ees) were determined on a **Waters 1525** HPLC system using commercially available chiral columns. The optical rotations were measured using a **Perkin-Elmer model 343** polarimeter at the reported temperature.

Experimental Procedure:

Fe 1	^N_ +	OBu ⁿ O 2a	Pd(OAc) ₂	Fe 3a	N∠ OBu ⁿ O
Entry	Solvent	Base	Additives	Acid	Yield[%]
1	Toluene	-	-	-	20
2	Toluene	-	TBAB	PivOH	27
3	Toluene	K ₂ CO ₃	-	PivOH	25
4	Toluene	K ₂ CO ₃	TBAB	PivOH	34
5	NMP	K ₂ CO ₃	TBAB	PivOH	60
6	DMF	K ₂ CO ₃	TBAB	PivOH	65
7	DMSO	K ₂ CO ₃	TBAB	PivOH	22
8	EtOH	K ₂ CO ₃	TBAB	PivOH	19
9	CHCl ₃	K ₂ CO ₃	TBAB	PivOH	19
10	CH ₃ CN	K ₂ CO ₃	TBAB	PivOH	10
11	DMF	NEt ₃	TBAB	PivOH	18
12	DMF	Cs ₂ CO ₃	TBAB	PivOH	28
13	DMF	KOAc	TBAB	PivOH	46
14	DMF	KOBu ^t	TBAB	PivOH	64
15 ^b	DMF	K ₂ CO ₃	TBAB	PivOH	85

Screening of reaction parameter (Table S1)

^a Reaction conditions: **1** 1 mmol, **2a** 1.5 equiv, Pd(OAc)₂ 5 mol%, K₂CO₃ 0.3 equiv, TBAB 0.5 equiv, PivOH = C(CH₃)₃CO₂H 1 equiv, DMF 2 mL, 80 °C, 12 h. ^b **1** 1 mmol, **2a** 3.0 equiv.

Fe	^	Pd(C K ₂ (TE	DAc) ₂ (5 CO ₃ (0.3 BAB (0.5	mmol%) 8 equiv) equiv) Fe	
	2	C(CF D	1 ₃) ₃ COO MF, 80º	C, 12 h 3	. r
Entry	Product	Yield[%]	Entry	Product	Yield[%]
1	Fe OBu ⁿ	85	7	Get OEt	40
2	Fe OCH ₃	70	8	Fe N	75
3	3b Fe OCEt 3c	79	9	3h Fe Ph 3i	72
4	Fe OBu ^t 3d	68	10		63
5	Fe OPh 3e	92	11	Fe CI 3k	46
6	$\begin{array}{c} \overbrace{Fe}^{N-} & Et \\ \overbrace{O}^{U-} & OCH_2CH \\ O & Bu^n \end{array}$	72	12		50

<u>General procedure for ortho alkenylation of N,N-dimethylaminomethyl</u> ferrocene with olefins. (Table S2)

^a Reaction Conditions: **1** 1 mmol, **2** 3 mmol, Pd(OAc)₂ 5 mmol%, K₂CO₃ 0.3 equiv, TBAB 0.5 equiv, C(CH₃)₃CO₂H 1 equiv, DMF 2 mL, 80 $^{\circ}$ C, 12 h, under air.

3 mmol olefins in 2 mL DMF was added into the 10 mL flask charged with 1 mmol N,N-dimethylaminomethyl ferrocene, 5 mol% $Pd(OAc)_2$ (11.2 mg), 0.3 mmol K₂CO₃, 0.5 mmol TBAB, 1 mmol PivOH. The mixture was stirred at 80 °C for 12 hours, then

cooled down to room temperature. The desired products were purified by chromatography on silica gel (elute: $EtOAc/NEt_3 10/1 v/v$).

<u>General procedure for enantioselective alkenylation of sp² C-H Bonds with olefins.</u>

N,N-Dimethylaminomethyl ferrocene (0.5 mmol, 1 equiv), $Pd(OAc)_2$ (5.6 mg, 0.025 mmol, 5 mol%), Boc-L-Phe-OH (13.3mg, 0.05 mmol, 10 mol%), K_2CO_3 (21.0 mg, 0.15 mmol, 0.3 equiv), TBAB (81.0 mg, 0.25 mmol, 0.5 equiv) were dissolved in 1.5 mL of anhydrous DMF in a 10 mL flask under air. The reaction mixture was stirred at 60 °C for 5 h, then cooled down to room temperature. The desired products were purified by chromatography on silica gel (elute: EtOAc/NEt₃ 10/1 v/v), and enantiomeric excesses (ees) were determined on a **Waters 1525** HPLC system using commercially available chiral columns as described below.

Characterization of new C-H Olefinated Products

(E)-Ethyl-2-methyl-3-[2-(N,N-dimethylaminomethylferrocenyl)]acrylate 3g

(Table S2, entry 7): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (s, 1 H), 4.63 (s, 1 H), 4.47 (s, 1 H), 4.42(t, 1 H), 4.29 (q, J = 6.70 Hz, 2 H), 4.12 (s, 5 H), 3.65 (d, J = 13.10 Hz, 1 H), 3.52 (d, J = 12.88 Hz, 1 H), 2.24(s, 6 H), 2.04(s, 3 H), 1.37 (t, J = 7.00 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 168.61, 135.99, 125.06, 79.29, 77.29, 72.55, 69.90, 60.61, 56.59, 44.16, 14.79.

(E)-4-(2-((dimethylamino)methyl)ferrocenyl)but-3-en-2-one 3h^[1]

(<u>Table S2, entry 8</u>): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 15.85 Hz, 1 H), 6.45 (d, J = 15.84 Hz, 1 H), 4.59 (s, 1 H), 4.48 (s, 1 H), 4.43 (s, 1 H), 4.09 (s, 5 H), 3.56 (d, J = 12.94 Hz, 1 H), 3.31 (d, J = 12.94 Hz, 1 H), 2.31(s, 3 H), 2.18 (s, 6 H). ¹³C NMR (100MHz, CDCl₃): δ 197.75, 142.99, 124.82, 85.39, 78.41, 77.33, 73.82, 70.16, 66.69, 56.97, 44.84, 27.52.

(E)-n-Butyl-3-[2-(N,N-dimethylaminomethylferrocenyl)]acrylate (pS)-4a

(Table 2, $({}_{p}S)$ -4a): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 15.64 Hz, 1 H), 6.11 (d, J = 15.68 Hz, 1 H), 4.56 (t, J = 1.28 Hz, 1 H), 4.43 (t, J = 2.32 Hz, 1 H), 4.38 (t, J = 2.56 Hz, 1 H), 4.18 (t, J = 6.72 Hz, 2 H), 4.09 (s, 5 H), 3.53 (d, J = 13.00 Hz, 1 H), 3.29 (d, J = 13.00 Hz, 1 H), 2.17 (s, 6 H), 1.68 (m, 2 H), 1.44 (m, 2 H), 0.97 (t, J = 7.36 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) : δ 167.44, 143.73, 115.53, 85.22, 78.74, 73.41, 70.16, 69.71, 66.59, 64.13, 57.00, 44.92. 30.85, 19.28, 13.82. HRMS (ESI+): m/z calc. for [C₂₀H₂₇FeNO₂+H]⁺: 370.1464; found [M+H]⁺: 370.1467. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), EtOH : *n*-hexane 2:8, 0.7 mL/min): tr 10.168 min (major), 14.101 min (minor): > 99% *ee*. [α]_D^{20.0°C} = + 1080° (c = 0.196 in CHCl₃, > 99% *ee*).

(E)-Ethyl-3-[2-(N,N-dimethylaminomethylferrocenyl)]acrylate (pS)-4b

(Table 2, $({}_{p}S)$ -4b): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 15.68 Hz, 1 H), 6.11 (d, J = 15.64 Hz, 1 H), 4.56 (s, 1 H), 4.43 (s, 1 H), 4.38 (s, 1 H), 4.23 (q, 2 H), 4.06 (s, 5 H), 3.53 (d, J = 13.00 Hz, 1 H), 3.29 (d, J = 13.40 Hz, 1 H), 2.16 (s, 6 H), 1.32(t, J = 7.08 Hz, 3 H). ¹³C NMR (100MHz, CDCl₃): δ 167.33, 143.75, 115.50, 85.19, 78.70, 73.41, 70.15, 69.71, 66.61, 60.16, 56.99, 44.91, 14.39. HRMS (ESI+): m/z calc. for [C₁₈H₂₃FeNO₂+H]⁺: 342.1151; found [M+H]⁺: 342.1151. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), EtOH : *n*-hexane 2:8, 0.7 mL/min): tr 10.718 min (major), 16.386 min (minor): 97% *ee*. [α]_D^{20.0°C} = +1000° (*c* = 0.238 in CHCl₃, 96% *ee*).

(E)-t-Butyl-3-[2-(N,N-dimethylaminomethylferrocenyl)]acrylate (pS)-4c

(<u>Table 2, ($_{p}S$)-4c</u>): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 15.64 Hz, 1 H), 6.05 (d, J = 15.64 Hz, 1 H), 4.54 (s, 1 H), 4.42 (s, 1 H), 4.36 (s, 1 H), 4.07 (s, 5 H), 3.52 (d, J = 12.96 Hz, 1 H), 3.28 (d, J = 13.00 Hz, 1 H), 2.17 (s, 6 H), 1.53 (s, 9 H). ¹³C NMR (100MHz, CDCl₃): δ 166.76, 142.52, 117.43, 85.05, 80.01, 73.17, 70.11, 69.51, 68.51, 66.45, 57.00, 44.94, 28.30. HRMS (ESI+): m/z calc. for [C₂₀H₂₇FeNO₂+H]⁺: 370.1464; found [M+H]⁺: 370.1470. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), *i*-PrOH : *n*-hexane 1:13, 0.7 mL/min): tr 14.010 min (minor), 15.164 min (major): 96% *ee*. [α]_D^{20.0°C} = + 920° (*c* = 0.184 in CHCl₃, 96% *ee*).

(E)-Phenyl-3-[2-(N,N-dimethylaminomethylferrocenyl)]acrylate (pS)-4d

(Table 2, $({}_{p}S)$ -4d): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 15.60 Hz, 1 H), 7.42 (t, J = 7.68 Hz, 2 H), 7.27 (d, J = 7.56 Hz, 1 H), 7.17 (d, J = 8.12 Hz, 2 H), 6.31 (d, J = 15.60 Hz, 1 H), 4.65 (s, 1 H), 4.52 (s, 1 H), 4.47 (d, J = 2.12 Hz, 1 H), 4.16 (s, 5 H), 3.58 (d, J = 13.08 Hz, 1 H), 3.38 (d, J = 13.08 Hz, 1H), 2.22 (s, 6 H). ¹³C NMR (100MHz, CDCl₃): δ 165.70, 151.01, 146.12, 129.39, 125.62, 121.76, 114.38, 85.20, 78.38, 73.95, 70.32, 66.90, 56.90, 44.81. HRMS (ESI+): m/z calc. for [C₂₂H₂₃FeNO₂+H]⁺: 390.1151; found [M+H]⁺: 390.1158. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), EtOH : *n*-hexane 2:8, 0.7 mL/min): tr 12.697 min (major), 15.657 min (minor): 95% *ee*. [α]_D^{20.0°C} = + 1110° (*c* = 0.196 in CHCl₃, 95% *ee*).

(E)-Methyl-3-[2-(N,N-dimethylaminomethylferrocenyl)]acrylate (pS)-4e

(Table 2, $({}_{p}S)$ -4e): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 15.68 Hz, 1 H), 6.11 (d, J = 15.68 Hz, 1 H), 4.56 (s, 1 H), 4.44 (s, 1 H), 4.38 (s, 1 H), 4.08 (s, 5 H), 3.75 (s, 3 H), 3.54 (d, J = 13.00 Hz, 1 H), 3.29 (d, J = 13.00 Hz, 1 H), 2.18 (s, 6 H). ¹³C NMR (100MHz, CDCl₃): 167.73, 144.06, 115.07, 85.22, 78.63, 73.51, 70.17, 69.76, 66.70, 57.02, 51.44, 44.92. HRMS (ES+): m/z calc. for $[C_{17}H_{21}FeNO_2+H]^+$: 328.0995; found $[M+H]^+$: 328.0996. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), EtOH : *n*-hexane 2:8, 0.7 mL/min): tr 11.293 min (major), 16.700 min (minor): 96% *ee*. [α]_D^{20.0°C} = + 1250° (c = 0.207 in CHCl₃, 95% *ee*).

(E)-2-ethylhexyl-3-[2-(N,N-dimethylaminomethylferrocenyl)]acrylate (pS)-4f

(Table 2, $({}_{p}S)$ -4f): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 15.64 Hz, 1 H), 6.11 (d, J = 15.64 Hz, 1 H), 4.57 (d, J = 0.76 Hz, 1 H), 4.44 (s, 1 H), 4.39 (d, J = 2.52 Hz, 1 H), 4.10 (s, 5 H), 3.52 (d, J = 13.00 Hz, 1 H), 3.29 (d, J = 13.00 Hz, 1 H), 2.17 (s, 6 H), 1.65 (m, 1 H), 1.42 (t, 2H), 1.37 (m, 7 H), 0.94 (m, 6 H). ¹³C NMR (100MHz, CDCl₃): δ 167.52, 143.63, 115.57, 85.21, 78.75, 73.39, 70.15, 69.71, 66.56, 57.00, 44.90, 38.92, 30.62, 30.58, 29.01, 24.00, 23.03, 14.10, 11.12. HRMS (ESI+): m/z calc. for [C₂₄H₃₅FeNO₂+H]⁺: 426.2090; found [M+H]⁺: 426.2095. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), *i*-PrOH : *n*-hexane 2:8, 0.6 mL/min): tr 11.328 min (minor), 12.130 min (major): 96% *ee*. [α]_D^{20.0°C} = + 990° (*c* = 0.216 in CHCl₃, 96% *ee*).

(E) -1-[2-(N,N-dimethylaminomethylferrocenyl)] -2-Phenyl-ethylene (pS)-4g

(Table 2, $({}_{p}S)$ -4g): Orange solid; ¹H NMR (400 MHz, CDCl₃) : δ 7.45 (d, J = 7.52 Hz, 2 H), 7.33 (t, J = 7.44 Hz, 2 H), 7.22 (t, J = 7.44 Hz, 1 H), 6.97 (d, J = 16.08 Hz, 1 H), 6.78 (d, J = 16.12 Hz, 1 H), 4.58 (s, 1 H), 4.33 (s, 1 H), 4.28 (t, J = 2.28 Hz, 1 H), 4.07 (s, 5 H), 3.60 (d, J = 12.96 Hz, 1 H), 3.36 (d, J = 12.96 Hz, 1 H), 2.21 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 138.06, 128.70, 126.88, 125.93, 125.16, 83.41, 82.46, 71.90, 69.77, 68.12, 65.49, 57.27, 44.90. HRMS (ES+): m/z calc. for [C₂₁H₂₃FeN+H]⁺: 346.1253; found [M+H]⁺: 346.1256. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), *i*-PrOH : *n*-hexane 3:7, 0.5 mL/min): tr 9.3783 min (major), 10.544 min (minor): 95% *ee*. [α]_D^{20.0°C} = + 740° (c = 0.268 in CHCl₃, 95% *ee*).

$(E) \hbox{-} 1-[2-(N,N-dimethylaminomethylferrocenyl)] \hbox{-} 2-(3-nitrophenyl) \hbox{-} ethylene$

(*pS*)-4h

(Table 2, $(_{D}S)$ -4h): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 8.28(s, 1 H), 8.04 (m, 1 H), 7.71 (d, J = 7.76 Hz, 1 H), 7.48 (t, J = 7.92 Hz, 1 H), 7.13 (d, J = 16.08 Hz, 1 H), 6.82 (d, J = 16.08 Hz, 1 H), 4.60 (s, 1 H), 4.38 (d, J = 1.28, 1 H), 4.31 (t, J = 2.48, 1 H), 4.10 (s, 5 H), 3.63 (d, J = 12.88 Hz, 1 H), 3.29 (d, J = 12.92 Hz, 1 H), 2.21 (s, 6 H). ¹³C NMR (100MHz, CDCl₃): δ 148.83, 139.91, 131.69, 129.52, 128.97, 124.20, 121.18, 120.20, 83.50, 82.05, 72.53, 69.88, 68.54, 65.88, 57.52, 45.08. HRMS (ES+): m/z calc. for [C₂₁H₂₂FeN₂O₂+H]⁺: 391.1104; found [M+H]⁺: 391.1105. The *ee* was determined by chiral HPLC (AD-H(250*4.6 mm), *i*-PrOH : *n*-hexane 3:7, 0.7 mL/min): tr 5.909 min (major), 6.832 min (minor): 94% *ee*. [α]_D^{20.0°C} = + 670° (*c* = 0.214 in CHCl₃, 94% *ee*).

(*E*)-1-[2-(N,N-dimethylaminomethylferrocenyl)]-2-(3-chlorophenyl)-ethylene $({}_{p}S)$ -4i

(<u>Table 2, ($_pS$)-4i</u>): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.43 (s, 1 H), 7.31 (d, J = 7.56, 1 H), 7.23-7.27 (m, 1 H), 7.19 (d, J = 7.72 Hz, 1 H), 6.99 (d, J = 16.08Hz, 1 H), 6.72(d, J = 16.04 Hz, 1 H), 4.57 (s, 1 H), 4.35 (s, 1 H), 4.29 (t, J = 2.32 Hz, 1 H), 4.07(s, 5 H), 3.60 (d, J = 12.96 Hz, 1 H), 3.33 (d, J = 12.96 Hz, 1 H), 2.21 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 139.99, 134.64, 129.88, 126.94, 126.69, 125.63, 125.34, 124.18, 82.93, 82.72, 72.18, 69.82, 68.31, 65.65, 57.36, 44.97. HRMS (ES+): m/z calc. for $[C_{21}H_{22}ClFeN+H]^+$: 380.0863; found $[M+H]^+$: 380.0866. The *ee* was determined by chiral HPLC (AS-H(250*4.6 mm), *i*-PrOH : *n*-hexane 0.1:9.9, 0.5 mL/min): tr 9.526 min (major), 12.346 min (minor): 96% *ee*. [α]_D^{20.0°C} = + 710° (*c* = 0.21 in CHCl₃, 96% *ee*).

(E)-1-[2-(N,N-dimethylaminomethylferrocenyl)]-2-(2-chlorophenyl)-ethylene ($_pS$)-4j

(Table 2, $({}_{D}S)$ -4j): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 7.76, 1 H), 7.36 (d, J = 7.88, 1 H), 7.26 (d, J = 3.72, 1 H), 7.23-7.14 (m, 2 H), 6.98 (d, J = 16.08 Hz, 1 H), 4.64 (s, 1 H), 4.35 (s, 1 H), 4.29 (t, J = 2.32 Hz, 1 H), 4.08(s, 5 H), 3.64 (d, J = 12.96 Hz, 1 H), 3.35 (d, J = 12.96 Hz, 1 H), 2.22 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 136.14, 132.57, 129.87, 128.17, 127.77, 126.90, 126.12, 122.88, 82.88, 82.63, 72.24, 69.91, 68.39, 66.23, 57.31, 44.89. HRMS (ES+): m/z calc. for [C₂₁H₂₂ClFeN+H]⁺: 380.0863; found [M+H]⁺: 380.0865. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), *i*-PrOH : *n*-hexane 3:7, 0.5 mL/min): tr 9.549 min (major), 12.438 min (minor): 96% *ee*. [α]_D^{20.0°C} = + 990° (*c* = 0.168 in CHCl₃, 96% *ee*).

(*E*)-1-[2-(N,N-dimethylaminomethylferrocenyl)]-2-(4-metheyl)-ethylene (*pS*)-4k

(Table 2, $({}_{\mathcal{D}}S)$ -4k): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, J = 7.96 Hz, 2 H), 7.14 (d, J = 7.88 Hz, 2 H), 6.91 (d, J = 16.12 Hz, 1 H), 6.74 (d, J = 16.08 Hz, 1 H), 4.57 (s, 1 H), 4.31 (s, 1 H), 4.25 (t, J = 2.32 Hz, 1 H), 4.06 (s, 5 H), 3.59 (d, J = 12.92 Hz, 1 H), 3.36 (d, J = 13.00 Hz, 1 H), 2.34 (s, 3 H), 2.21 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 136.73, 135.31, 129.40, 126.85, 125.85, 124.08, 83.69, 82.34, 71.77, 69.74, 68.00, 65.39, 57.28, 44.92, 21.28. HRMS (ES+): m/z calc. for [C₂₂H₂₅FeN+H]⁺: 360.1409; found [M+H]⁺: 360.1410. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), *i*-PrOH : *n*-hexane 3:7, 0.5 mL/min): tr 9.616 min (major), 11.793 min (minor): 96% *ee*. [α]_D^{20.0°C} = + 730° (*c* = 0.232 in CHCl₃, 96% *ee*).

 $(E) - 1 - [2 - (N, N-dimethylaminomethylferrocenyl)] - 2 - (2 - metheyl) - ethylene ({}_{p}S) - 4l$

(Table 2, (pS)-4l): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 7.44 Hz,

1 H), 7.21 (m, 1 H), 7.15 (d, J = 3.92 Hz, 2 H), 7.01 (d, J = 15.92 Hz, 1H), 6.87 (d, J = 15.92 Hz, 1 H), 4.59 (s, 1 H), 4.34 (s, 1 H), 4.27 (t, J = 2,40 Hz, 1 H), 4.08 (s, 5 H), 3.61 (d, J = 12.96 Hz, 1 H), 3.38 (d, J = 13.00 Hz, 1 H), 2.39 (s, 3 H), 2.22 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 137.13, 135.05, 130.45, 126.91, 126.43, 126.21, 125.00, 124.71, 83.81, 82.33, 72.00, 69.81, 68.10, 65.72, 57.24, 44.87, 20.04. HRMS (ES+): m/z calc. for $[C_{22}H_{25}FeN+H]^+$: 360.1409; found $[M+H]^+$: 360.1411. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), *i*-PrOH : *n*-hexane 3:7, 0.5 mL/min): tr 9.208 min (major), 9.994 min (minor): 96% *ee*. $[\alpha]_D^{20.0^{\circ}C} = + 800^{\circ}$ (c = 0.196 in CHCl₃, 96% *ee*).

(*E*)-1-[2-(N,N-dimethylaminomethylferrocenyl)]-2-(2,3,4,5,6,fluorine)-ethylene $\binom{0}{p}$ -4n

(Table 2, $({}_{p}S)$ -4n): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 16.48 Hz, 1 H), 6.66 (d, J = 16.48 Hz, 1 H), 4.60 (s, 1 H), 4.39 (s, 1 H), 4.34 (d, J = 2.40 Hz, 1 H), 4.09 (s, 5 H), 3.56 (d, J = 12.96 Hz, 1 H), 3.27 (d, J = 12.96 Hz, 1 H), 2.20 (s, 6 H). ¹³C NMR (100MHz, CDCl₃): δ 135.31, 110.03, 83.80, 82.04, 72.85, 70.00, 68.87, 65.85, 57.43, 44.96. HRMS (ES+): m/z calc. for [C₂₁H₁₈F₅FeN+H]⁺: 436.0782; found [M+H]⁺: 476.0785. The *ee* was determined by chiral HPLC (IE-3(250*4.6 mm), *i*-PrOH : *n*-hexane 5:5, 0.3 mL/min): tr 15.183 min (major), 15.936 min (minor): 91% *ee*. [α]_D^{20.0°C} = + 690° (c = 0.18 in CHCl₃, 91% *ee*).

(E)-1-[2-(N,N-dimethylaminomethylferrocenyl)]-2-cyclohexyl-ethylene (pS)-40

(Table 2, $({}_{p}S)$ -40): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 6.14 (d, J = 15.76 Hz, 1 H), 5.81(m, 1 H), 4.39 (s, 1 H), 4.20 (d, J = 2.00 Hz, 1 H), 4.13 (t, J = 2.40 Hz, 1 H), 3.99 (s, 5 H), 3.46 (d, J = 12.92 Hz, 1 H), 3.29 (d, J = 12.96 Hz, 1 H), 2.18 (s, 6 H), 2.02 (m, 1 H), 1.76 (m, 4 H), 1.20 (m, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 135.24, 122.33, 84.37, 81.52, 70.98, 69.67, 67.28, 65.22, 57.11, 44.87, 41.35, 33.44, 33.12, 29.73, 26.24, 26.11, 26.08. HRMS (ES+): m/z calc. for [C₂₁H₂₉FeN+H]⁺: 352.1722; found [M+H]⁺: 352.1724. The *ee* was determined by chiral HPLC (AD-H(250*4.6 mm), *i*-PrOH : *n*-hexane 0.3:0.87, 0.9 mL/min): tr 4.073 min (major), 4.811 min (minor): 94% *ee*. [α]_D^{20.0°C} = + 560° (*c* = 0.212 in CHCl₃, 94% *ee*).

(*E*)-1-[2-(N,N-dimethylaminomethylferrocenyl)]-2-(N,N-dimethylformamide)-eth ylene ($_pS$)-4p

(Table 2, $({}_{p}S)$ -4p): Orange solid; 1H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 14.64 Hz, 1 H), 6.61 (d, J = 14.68 Hz, 1 H), 4.49 (s, 1 H), 4.39 (s, 1 H), 4.31 (s, 1 H), 4.07 (s, 5 H), 3.58 (d, J = 12.16 Hz, 1 H), 3.25 (d, J = 10.56 Hz, 1 H), 3.09 (s, 3 H), 3.02 (s, 3 H), 2.16 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 167.01, 140.95, 115.00, 84.30, 80.30, 73.21, 70.00, 69.12, 66.82,57.21, 44.80, 37.28, 35.83. HRMS (ESI+): m/z calc. for [C₁₈H₂₄FeN₂O+H]⁺: 341.1311; found [M+H]⁺: 341.1313. The *ee* was determined by chiral HPLC (AS-H(250*4.6 mm), EtOH: *n*-hexane 0.06:0.54, 0.6 mL/min): tr 9.190 min (major), 12.367 min (minor): 97% *ee*. [α]_D^{20.0°C} = + 750° (c = 0.158 in CHCl₃, 97% *ee*).

(*E*)-1-[2-(N,N-dimethylaminomethylferrocenyl)]-2-(diethyl phosphite)-ethylene $({}_{p}S)$ -4q

(Table 2, $(_pS)$ -4q): Orange solid; ¹H NMR (400 MHz, CDCl₃): δ 7.49 (m, 1 H), 5.91 (m, 1 H), 4.54 (s, 1 H), 4.43 (s, 1 H), 4.37 (d, J = 2.20 Hz, 1 H), 4.13 (d, J = 7.36 Hz, 4 H), 4.08 (s, 5 H), 3.53 (d, J = 13.00 Hz, 1 H), 3.32 (d, J = 13.00 Hz, 1 H), 2.17 (s, 6 H), 1.36 (m, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 111.60, 109.69, 84.45, 73.36, 70.16, 69.58, 66.48, 61.66, 61.61, 56.80, 44.69, 29.72, 16.46. HRMS (ESI+): m/z calc. for [C₁₉H₂₈FeNO₃P+H]⁺: 406.1229; found [M+H]⁺: 406.1235. The *ee* was determined by chiral HPLC (AS-H(250*4.6 mm), *i*-PrOH: *n*-hexane 0.2:0.2, 0.4 mL/min): tr 21.105 min (major), 12.886 min (minor): 93% *ee*. [α]_D^{20.0°C} = + 430° (*c* = 0.32 in CHCl₃, 93% *ee*).

Fig. SI ESI-(+)-MS of the sample taken at 2 h after mixing N, N-dimethyl aminomethyl ferrocene **1** and butyl acrylate **2a** under optimal reaction conditions.

- A: MS/MS of principal ion in MS spectrum at m/z 243.0702
- B: ESI-(+)-MS/MS of N, N-dimethylaminomethyl ferrocenium (calcd. for $C_{13}H_{17}FeN^+$: m/z 243.0710; $C_{11}H_{11}Fe^+$: m/z 199.0210)

References:

(1) Izumi T.; Endo K.; Saito O.; Shimizu I.; Maemura M.; Kasahara A. *Bull. Chem. Soc. Jpn.*, **1977**, *51*: 663-664

NMR Data

¹H NMR spectrum of compound 4a

¹³C NMR spectrum of compound 4a

¹H NMR spectrum of compound 4b

¹³C NMR spectrum of compound 4b

¹H NMR spectrum of compound 4c

¹³C NMR spectrum of compound 4c

¹H NMR spectrum of compound 4d

¹³C NMR spectrum of compound 4d

¹H NMR spectrum of compound 4e

¹³C NMR spectrum of compound 4e

¹H NMR spectrum of compound 4f

¹³C NMR spectrum of compound 4f

¹³C NMR spectrum of compound 4g

¹³C NMR spectrum of compound 4h

¹H NMR spectrum of compound 4i

¹³C NMR spectrum of compound 4i

¹³C NMR spectrum of compound 4j

¹H NMR spectrum of compound 4k

¹³C NMR spectrum of compound 4k

¹³C NMR spectrum of compound 41

¹³C NMR spectrum of compound 4n

¹H NMR spectrum of compound 40

¹³C NMR spectrum of compound 40

¹³C NMR spectrum of compound 4p

¹H NMR spectrum of compound 4q

¹³C NMR spectrum of compound 4q

Chiral HPLC Data:

HPLC chiralcel IE-3 (EtOH : *n*-hexane 2:8, 0.7 mL/min), > 99% *ee*

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	10.168	8372507	99.86	749014	99.81
2	14.101	11554	0.14	1409	0.19

HPLC chiralcel IE-3 (EtOH : n-hexane 2:8, 0.7 mL/min), 96% ee

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	10.716	16523943	50.21	1329739	62.29
2	16.218	16386882	49.79	804845	37.71

Reported by User: Breeze ÓÄ»§ (Breeze)

HPLC chiralcel IE-3 (*i*-PrOH : *n*-hexane 1:13, 0.7 mL/min), 96% *ee*

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	13.735	23889700	50.04	1124626	51.19
2	15.051	23850912	49.96	1072352	48.81

Reported by User: Breeze Óû§ (Breeze)

milo oyatom

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	14.010	621610	2.09	34218	2.51
2	15.164	29148561	97.91	1326484	97.49

HPLC chiralcel IE-3 (EtOH : *n*-hexane 2:8, 0.7 mL/min), 95% *ee*

Reported by User: Breeze ÖÄ»§ (Breeze)

HPLC chiralcel IE-3 (EtOH : n-hexane 2:8, 0.7 mL/min), 95% ee

Reported by User: Breeze Óû§ (Breeze)

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	11.378	22668637	49.98	1795495	60.83
2	16.769	22684495	50.02	1156059	39.17

ITLO OYOTEI

Reported by User: Breeze Óû§ (Breeze)

SAMPLE INFORMATION Acquired By: 163 Breeze Sample Name: 8/20/2012 1:37:18 PM CST Sample Type: Unknown Date Acquired: Vial: Acq. Method: 3 pc Date Processed: . 9/9/2012 11:48:16 AM CST Injection # Injection Volume: 10.00 ul Channel Name: W2489 ChA Run Time: 25.00 Minutes Channel Desc.: W2489 ChA 254nm Sample Set Name pc sample 3.50 3.00 2.50 2.00 AU 1.50 1.00 0.50 700 . 0 0.00 2.00 4.00 8.00 10.00 14.00 20.00 24.00 6.00 12.00 16.00 18.00 22.00 0.00 Minu

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	11.293	62056675	97.72	3572498	97.98
2	16.700	1448662	2.28	73668	2.02

HPLC chiralcel IE-3 (i-PrOH : n-hexane 2:8, 0.6 mL/min), 96% ee

Project Name siyinchun Reported by User: Breeze Óû§ (Breeze)

HPLC chiralcel IE-3 (i-PrOH : n-hexane 3:7, 0.5 mL/min), 95% ee

HPLC chiralcel AD-H (i-PrOH : n-hexane 3:7, 0.7 mL/min), 94% ee

HPLC chiralcel AS-H (i-PrOH : n-hexane 0.1:9.9, 0.5 mL/min), 96% ee

2.16

56696

1.64

972990

2 12.346

HPLC chiralcel IE-3 (i-PrOH : n-hexane 3:7, 0.5 mL/min), 96% ee

Project Name siyinchun Reported by User: Breeze Óû§ (Breeze) HPLC System INFORMATION SAMPLE 160xx 0 01:0 49 Sample Name Acquired By: Breeze Sample Type: Unknown Date Acquired: 9/4/2012 9:42:26 PM CST pc 9/9/2012 11:59:29 AM CST W2489 ChA Vial: Acq. Method: Injection #: Date Processed: Injection Volume: 10.00 ul Channel Name: Run Time: 15.00 Minutes Channel Desc.: W2489 ChA 254nm Sample Set Name pc sample 11.919 0.90 0.80 0.70 0.60 0.50 A 0.40 0.30 0.20 0.10 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 0.00 Minut RT Area Height % Height % Area (min) (µV*sec) (μV) 1 9.329 22879233 49.93 844330 52.01 2 11.919 22943782 50 07 778925 47.99 HPLC System Project Name siyinchun Reported by User: Breeze Óû§ (Breeze) SAMPLE INFORMATION 160 0.01:0.49 d Sample Name: Acquired By: Breeze Date Acquired: Acq. Method: Sample Type: Unknown 9/4/2012 9:59:14 PM CST pc 9/9/2012 12:01:59 PM CST Vial: Injection #: Date Processed: Injection Volume: Run Time: 10.00 ul Channel Name: Channel Desc.: W2489 ChA W2489 ChA 254nm 15.00 Minutes Sample Set Name pc sample 0.90 0.80 0.70 0.60 0.50 A 0.40 0.30 0.20 12.438 0.10 0.0 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 RT Area Height % Height % Area .1.19 0

	(11111)	(µv sec)		(µv)	
1	9.549	37466465	97.77	926261	97.40
2	12.438	856093	2.23	24742	2.60

HPLC chiralcel IE-3 (i-PrOH : n-hexane 3:7, 0.5 mL/min), 96% ee

HPLC chiralcel IE-3 (EtOH : *n*-hexane 2:8, 0.7 mL/min), >99% *ee*

4n

HPLC chiralcel IE-3 (i-PrOH : n-hexane 5:5, 0.3 mL/min), 91% ee

HPLC chiralcel AD-H (i-PrOH : n-hexane 0.3:0.87, 0.9 mL/min), 94% ee

40

HPLC chiralcel AS-H (EtOH : n-hexane 0.06:0.54, 0.6 mL/min), 97% ee

1.73

2833

1.73

58036

2 12.367

HPLC chiralcel AS-H (i-PrOH : n-hexane 0.2:0.2, 0.4 mL/min), 93% ee

96.43

287267

94.54

26708585

2 21.105