Supplementary Information

Peptide-based Targeting of Fluorescent Zinc Sensors to the Plasma Membrane of Live Cells

Robert J. Radford, Wen Chyan, and Stephen J. Lippard*

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

Page Contents

- S1 Materials, methods, and experimental details
- S1 Synthesis and purification of Palm-ZP1
- S2 Synthesis and purification of Palm-ZQ
- S2 Photophysical and zinc-binding studies of Palm-ZP1
- S3 Photophysical and zinc-binding studies of Palm-ZQ
- S3 Mammalian cell culture and imaging procedures
- S4 Supporting Figures and Tables
- S10 References

List of Supporting Figures and Tables

- S4 **Figure S1.** Analytical HPLC chromatogram of Palm-ZP1.
- S5 **Figure S2.** ESI-MS of Palm-ZP1.
- S5 **Figure S3.** Analytical HPLC chromatogram of Palm-ZQ.
- S6 **Figure S4.** ESI-MS of Palm-ZQ.
- S6 Figure S5. Fluorescence spectra, zinc-binding isotherms and fits for Palm-ZP1 and ZP1.
- S6 **Table 1.** Photophysical and zinc-binding properties of Palm-ZP1 and ZP1.
- S7 Figure S6. Comparing the cellular localization of Palm-ZP1 and ZP1 in live HeLa cells.
- S7 Figure S7. DIC and fluorescence microscopy images from Figure 5.
- S8 Figure S8. DIC and fluorescence microscopy images from Figure 6.
- S8 Figure S9. Fluorescence spectra, zinc-binding isotherms and fits for Palm-ZQ and TSQ.
- S9 **Table 2.** Photophysical and zinc-binding properties of Palm-ZQ and TSQ.
- S9 **Figure S10.** DIC, Mitotracker Red, and Palm-ZQ images for investigation into Palm-ZQ zinc responsiveness in RWPE-1 cells.
- S10 Figure S11. Live cell imaging of Palm-ZQ in HeLa cells.

Materials and Methods

HPLC grade acetonitrile, anhydrous N.N-dimethylformamide (DMF), dichloromethane, 4methylpiperidine, N,N-diisopropylethylamine (DIPEA), trifluoroacetic acid (TFA), triisopropylsilane, and palmitic acid were purchased from Sigma-Aldrich. FMOC-Pro-OH, FMOC-Asp(OtBu)-OH, and Rink amide AM resin (0.61 mmol/g, 100-200 mesh) were obtained from Novabiochem. FMOC-Lvs(MTT)-OH was purchased from Aapptec. 2-(7-Aza-1H-benzotriazole-1-vl)-1.1.3.3tetramethyluronium hexafluorophosphate (HATU) was procured from Oakwood Chemicals. N-(6-Methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ) was acquired from Enzo Life Sciences. Disposable 2.5-mL reaction vessels were ordered from Torvig. All solvents were reagent grade unless otherwise specified, and commercially available reagents were used as received. 6-CO₂H ZP1¹ and zinguin ² were prepared according to literature procedures. Reverse-phase HPLC purifications were carried out on an Agilent Technologies 1200 Series HPLC system. Mass spectra were collected on an 1100-series Agilent LC/MSD ion trap. Aqueous solutions were prepared using Millipore water. Molecular biology grade piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES) and 99.999% KCl were purchased from Aldrich. In order to remove adventitious metal ions, buffered solutions were treated with Chelex resin (Bio-Rad) according to manufacturer specifications. A 50 mM zinc(II) stock solution was prepared using 99.999% ZnCl₂ (Aldrich). UV-vis spectra were recorded on a Varian Cary 50 Bio UV-visible spectrophotometer. Fluorescence spectra were recorded on a Quanta Master 4 L-format scanning spectrofluorimeter (Photon Technology International). The acquisition temperature was kept at 25 ± 0.1 °C by circulating water bath. Sample solutions were placed in guartz cuvettes (Starna) with 1 cm path lengths. Stock solutions of Palm-ZP1 and Palm-ZQ were prepared in DMSO, partitioned in 50 µL aliquots and stored in the dark at – 40° C.

Peptide Synthesis

Peptides were manually synthesized according to a modified literature protocol³ as outlined below.

Palm-ZP1 (Palmitic acid-PPPDDK(ZP1)-CONH₂)

Palm-ZP1 was synthesized on the 15-umol scale using Rink amide AM resin. The resin was placed in a fritted 2.5-mL Torvig disposable syringe and swelled with 2 mL of anhydrous DMF for 1 hour prior to synthesis. N-terminal FMOC groups were removed by treating the resin with a solution of 20% 4-methylpiperidine in DMF (v/v) for a period of 10 min, followed by a 5 \times 1.5 mL wash with DMF. For all coupling reactions, 60 µmol (4 equiv.) of FMOC-protected amino acids, palmitic acid, or 6-CO₂H ZP1 were combined as solids with 60 µmol (23 mg) of HATU. Immediately prior to coupling, solids were dissolved in 1.5 mL of a freshly prepared 10% DIPEA/DMF (v/v) solution, placed in the reaction vessel and shaken for 25 min. After the allotted time, the resulting solution was expelled from the syringe and the resin was washed with 5×1.5 mL of DMF. Following addition of all amino acids and the *N*-terminal palmitic acid moiety, the 4-methyltrityl group was removed from the *C*-terminal Lys according to manufacturer specifications.⁴ Briefly, the resin was first exchanged into dichloromethane (DCM). A 3% TFA/DCM (v/v) solution was prepared, and the resin was mixed with the TFA/DCM mixture 2×1.5 mL for 10 min/ea. During equilibration, the TFA/DCM solution turned bright yellow, indicating that MTT was being liberated. After MTT deprotection, the resin was washed with 5×1.5 mL DCM followed by 5×1.5 mL DMF. The 6-CO₂H ZP1 was then coupled to the ε -amino group of the C-terminal Lys as described above. Following Palm-ZP1 synthesis, the resin was washed with 5 \times 1.5 mL DCM and dried in vacuo for a period of ≥ 20 min prior to cleavage. Palm-ZP1 was cleaved from the resin by treating with a TFA/water/triisopropylsilane 95/2.5/2.5% (v/v) solution for 90 min. The resulting crude peptide was purified by HPLC on the semi-preparative scale using a C18 reverse-phase

column (VYDAC, 9.5 mm × 250 mm). A two-solvent system (A = 0.1% (v/v) TFA in H₂O; B = 0.1% TFA in acetonitrile (v/v)) was employed for purification according to the following protocol: isocratic flow, 20 % B, 0-5 min; gradient #1, 10-50% B, 5-10 min; gradient #2, 50-95% B, 10-35 min. The flow-rate was kept constant at 3 mL min⁻¹ throughout the purification. Fractions from sequential runs containing Palm-ZP1 were pooled and lyophilized. The purity of the final product was assessed via analytical HPLC (Vydac, C18, 5 µm, 4.6 mm i.d. x 250 mm). After a 5 min isocratic wash, a linear gradient of 10-75% B was run over 30 min (35 min total) at a flow rate of 1 mL min⁻¹. Palm-ZP1 (retention time = 31.2 min) was judged to be \geq 95% pure at all wavelengths based on the integrated chromatograms (**Figure S1**). Observed peaks for Palm-ZP1, C₉₂H₁₁₂C₁₂N₁₄O₁₇, in ESI-MS (m/z, amu; (calculated)): 1755.8 (1755.3) [M+H]⁺, 878.2 (878.3) [M+2H]²⁺, 585.7 (585.8) [M+3H]³⁺ (**Figure S2**).

Palm-ZQ (Palmitic acid-PPPDDK(ZQ)-CONH₂)

Palm-ZQ was synthesized on the 15-µmol scale in a procedure similar to that used for Palm-ZP1. For conjugation of zinquin to the ε -amino group of the *C*-terminal Lys, 60 µmol (23 mg) of zinquin acid was mixed with 60 µmol (23 mg) of HATU in freshly prepared 10% DIPEA/DMF (v/v). The mixture was allowed to react with the resin for a period of 60 min, after which the resin was washed, cleaved, and purified. Palm-ZQ was purified via HPLC, using a two buffer system (*vide supra*), employing the following protocol: 1) isocratic flow, 10 % B, 0-2 min; 2) linear gradient A, 10-50 % B, 2-5 min; 3) linear gradient B, 50-99 % B, 5-25 min, all at a flow rate of 3 mL min⁻¹. Fractions containing Palm-ZQ from sequential runs were pooled and lyophilized. The purity of the final product was assessed via analytical HPLC (Vydac, C18, 5 µm, 4.6 mm i.d. x 250 mm). After an initial 5 min isocratic wash (10% B), a linear gradient of 10-95% B was run over 35 min (40 min total) at a flow rate of 1 mL min⁻¹. Palm-ZQ (retention time = 38.6 min) was judged to be \ge 90% pure at all wavelengths based on the integrated chromatogram (**Figure S3**). Observed peaks for Palm-ZQ, C₆₄H₉₂N₁₀O₁₅S, in ESI-MS (m/z, amu; (calculated)): 1295.7 (1295.6) [M+Na]⁺, 1274.0 (1273.6) [M+H]⁺ (**Figure S4**).

Photophyscial and Zinc-Binding Properties of Palm-ZP1

Spectroscopic measurements for Palm-ZP1 were carried out in a mixed solvent system consisting of 25 mM PIPES buffer (pH 7) with 50 mM KCl and 50% acetonitrile (v/v) (**Figure 2** and **S5**). Except where noted, all fluorescence data were obtained by exciting at 495 nm and observing from 500-650 nm, with 0.1 sec integration time and slit widths of 0.4 mm (1.6 nm). Emission spectra represent the average of three scans. The quantum yield of Palm-ZP1 was referenced to fluorescein in 0.1 M NaOH_(aq), which has a known quantum yield of $\phi = 0.95$.⁵

Apparent K_{d-Zn} *for Palm-ZP1*:

Apparent zinc-binding affinities (K_{d-Zn}) were determined by a modified literature procedure.⁶ For each zinc-binding titration, 1 mM EDTA and 2 mM CaCl₂ were added to the MeCN/PIPES buffered solution. Palm-ZP1 or ZP1 was added, and the system was allowed to reach equilibrium (30 min). Aliquots of ZnCl₂ were successively added, and the emission spectra recorded once the emission spectrum stabilized (~30 min). The amount of free zinc for a given concentration of total zinc was calculated using the maxchelator program (<u>http://maxchelator.stanford.edu/webmaxc/webmaxcS.htm</u>) based on initial values of 1 mM EDTA, 2mM CaCl₂, an ionic strength of I = 0.05 mol dm⁻³, and a pH of 7.0. Due to the addition of acetonitrile to the buffered solution, we compared the apparent K_{d-Zn} for Palm-ZP1 to ZP1 under identical conditions (Figure S5 and Table S1).

Photophysical and Zinc-Binding Properties of Palm-ZQ

Characterization of Palm-ZQ (**Figure 7**) was performed in 25 mM PIPES buffer (pH 7) with 50 mM KCl, and 50% (v/v) acetonitrile. Zinc affinities (K_{d-Zn}) were compared to TSQ under identical conditions (**Figure S9** and **Table S2**). Quantum yields for Palm-ZQ and TSQ were referenced to quinine sulfate in 0.1 M H₂SO₄, which has a known quantum yield of $\phi = 0.55$.⁷

Apparent K_{d-Zn} for Palm-ZQ:

Apparent zinc-binding affinities (K_{d-Zn}) were determined using a modified literature procedure.² For each zinc-binding titration, 2 mM EGTA was added to the MeCN/PIPES buffered solution. Palm-ZQ or TSQ was added and the system was allowed to reach equilibrium before beginning the titration (30 min). Aliquots of ZnCl₂ were successively added, and the emission spectra recorded once the emission spectrum stabilized (~30 min). The amount of free zinc for a given concentration of total zinc was calculated using the maxchelator program (http://maxchelator.stanford.edu/webmaxc/webmaxcS.htm) based on initial values of 2 mM EGTA at an ionic strength of I = 0.05 mol dm⁻³ and a pH of 7.0. Due to the addition of acetonitrile to the buffered solution, we compared the apparent K_{d-Zn} for Palm-ZQ to TSQ under identical conditions (**Figure S9** and **Table S2**).

Mammalian Cell Culture, Labeling, and Imaging Procedures.

General

HeLa cells were cultured at 37 °C under a 5% CO₂ humidified atmosphere in Dulbecco's Modified Eagle Medium (High Glucose DMEM, Life Technologies) supplemented with 10% fetal bovine serum (FBS, HyClone), penicillin (100 μ g/mL), and streptomycin (100 μ g/mL). RWPE-1 cells were cultured at 37 °C under a 5% CO₂ humidified atmosphere in keratinocyte serum-free media (Life Technologies) supplemented with prequalified human recombinant Epidermal Growth Factor 1-53 (EGF 1-53) and Bovine Pituitary Extract (BPE). For live cell imaging, cells were seeded in 35-mm poly- D-Lys coated glass-bottom culture dishes (MatTek Corporation).

Palm-ZP1

Palm-ZP1 (2.5 μ M) was incubated for 30 min at 37° C and 5% CO₂ in dye- and serum-free DMEM. For multichannel imaging and colocalization studies, staining of the plasma membrane was accomplished by addition of Cell Mask Orange (Life Technologies, final concentration 2.5 μ g/mL) for 15-20 min. Prior to imaging, cells were rinsed with warm dye- and serum-free DMEM (2 × 2 mL) and bathed in warm dye- and serum-free DMEM (2 mL). To assess the zinc responsiveness of Palm-ZP1, stock solutions of ZnCl₂ (10 mM) were diluted in warm dye- and serum-free DMEM to a final ZnCl₂ concentration of 50 μ M. The zinc-enriched media was exchanged in the cell culture dish directly on the microscope stage. Similarly, a stock solution of ethylenediaminetetraacetic acid (EDTA, 100 mM) in water (pH 7) was diluted in warm dye- and serum-free DMEM to a concentration of 100 μ M. Media containing EDTA was exchanged in the culture dishes on the microscope stage.

Palm-ZQ

Palm-ZQ (10 μ M) was incubated for 30 min at 37° C and 5% CO₂ in dye- and serum free DMEM. For multi-channel imaging and colocalization studies, staining of the mitochondria was accomplished by addition of Mitotracker Red (Life Technologies, final concentration: 1 μ M) for 30 min. Prior to imaging, cells were rinsed with warm dye- and serum-free DMEM (2 × 2 mL) and bathed in warm dyeand serum-free DMEM (2 mL). To assess the zinc responsiveness of Palm-ZQ, stock solutions of ZnCl₂ (10 mM) were diluted in warm dye- and serum-free DMEM to a final ZnCl₂ concentration of 50 μ M. The zinc-enriched media was exchanged in the cell culture dish directly on the microscope stage. Similarly, a stock solution of ethylenediaminetetraacetic acid (EDTA, 100 mM) in water (pH 7) was diluted in warm dye- and serum-free DMEM to a concentration of 100 μ M. Media containing EDTA was exchanged in the culture dishes on the microscope stage.

Fluorescence Microscopy

The imaging experiments were performed using a Zeiss Axiovert 200M inverted epifluorescence microscope equipped with an EM-CCD digital camera (Hamamatsu) and a MS200 XY Piezo Z stage (Applied Scientific Instruments). The light source was an X-Cite 120 metal-halide lamp (EXFO) and the fluorescence images were obtained using an oil-immersion objective at 63× magnification. The microscope was operated using Volocity software (Perkin-Elmer).

Quantification of Zinc Turn-On

Images were processed using ImageJ. All settings (i.e. exposure time and sensitivity) were kept constant for each image series.

Pearson's correlation coefficients (r):

To calculate *r*, images were first deconvoluted using a calculated point-spread function (PSF) map based on emission wavelength, refractive index of the media (n = 1.518), and the numerical aperture (1.4). Deconvoluted channels (i.e. sensor and organelle trackers) were merged and analyzed. For each image, a minimum of three regions-of-interest (ROI) were selected and the *r*-value calculated using an ImageJ plugin.⁸ This process was repeated for 3-5 plates, which spanned multiple passage numbers (\leq 15) and days.

Figure S1. Analytical HPLC chromatogram of Palm-ZP1, monitoring absorbance at 220 and 520 nm. Palm-ZP1 was judged to be $\ge 95\%$ pure based on the integrated absorbance signal at both wavelengths.

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Figure S2. ESI-MS (positive mode) of Palm-ZP1.

Figure S3. Analytical HPLC chromatogram of Palm-ZQ, monitoring absorbance at 220, 260, and 330 nm. Palm-ZQ was judged to be \geq 90% pure based on the integrated absorbance signal of each wavelength.

Figure S4. ESI-MS (positive mode) of Palm-ZQ.

Figure S5. Measurement of the zinc-binding affinities, by fluorescence spectroscopy, for Palm-ZP1 (green) and ZP1 (red), in 25 mM PIPES buffer (pH 7) with 50 mM KCl, and 50% (v/v) acetonitrile. Changes in the emission spectra of Palm-ZP1 (a) and ZP1 (c) upon addition of increasing amounts of free zinc. Representative binding isotherms and fits for Palm-ZP1 (b) and ZP1 (d). Apparent K_{d-Zn} values reported are the average of three trials and are listed in Table S1. Samples were excited at 470 nm with an emission window of 475-675 nm.

|--|

Sensor	Abs λ (nm), $\epsilon \times 10^4$ (M ⁻¹ cm ⁻¹)		Å	ф_	$K_{\rm rel}$ (M)	Normalized K_{-}
	Аро	Zn(II)	Ψapo	ΨZn	\mathbf{M}_{d} -Zn (IVI)	Normanzed K _{d-Zn}
$\begin{array}{c} Palm-\\ P_{3}D_{2}K(ZP1)^{a}\end{array}$	517, 6.6	506, 7.4	0.16±0.053	0.79±0.049	$8.2(3) \times 10^{-11}$	1.15
ZP1 ^b	515, 7.9	507, 8.4	0.38	0.87	$7.1(3) \times 10^{-11}$ c	1

^a Spectroscopic data and apparent zinc dissociation constants (K_{d-Zn}) were determined in 25 mM PIPES buffer (pH 7) with 50 mM KCl and 50% (v/v) acetonitrile. ^bQuantum yield, absorption, and extinction coefficient values were taken from literature.¹ ^cFor comparison, the K_{d-Zn} for ZP1 was determined under identical conditions. ZP1 has a known K_{d-Zn} of 0.7 nM, in 50 mM PIPES buffer (pH 7), 100 mM KCl.

Figure S6. The observed localization of zinc-bound Palm-ZP1 and ZP1 in live HeLa cells. Top row: (a) DIC image of cells pretreated with a 2.5 μ M solution of Palm-ZP1, (b) emission from zinc-bound Palm-ZP1, (c) overlay of (a) and (b). Bottom row: (d) DIC image of cells pretreated with 5 μ M of ZP1 (e) emission from zinc-bound ZP1, (f) overlay of (d) and (e).

Figure S7. Imaging Palm-ZP1 in live HeLa cells via fluorescence microscopy. The fluorescence signal from Palm-ZP1, (a) initially, (b) after addition of 50 μ M ZnCl₂, and (c) after addition of 100 μ M sodium pyrithione, and (d) the DIC image for the set.

Figure S8. DIC and fluorescence microscopy images of HeLa cells that were incubated with Palm-ZP1 for 1 (a,b) 2 (c,d), 4 (e,f) or 8 hr (g,h) at 37 °C and 5 % CO_2 .

Figure S9. Measurement of the zinc-binding affinities, by fluorescence spectroscopy, of Palm-ZQ (blue) and TSQ (red) in 25 mM PIPES buffer (pH 7) with 50 mM KCl, and 50% (v/v) acetonitrile. Observed changes in the emission spectra of Palm-ZQ (a) and TSQ (c) upon addition of increasing amounts of free zinc. Representative normalized binding isotherm and fits for Palm-ZQ (b) and TSQ (d). Apparent K_{d-Zn} values, which are the average of three trials, are given in Table S2.

Sensor	Abs λ (nm), $\epsilon \times 10^{3}$ (M ⁻ ¹ cm ⁻¹)		фаро	φ _{Zn}	K _{d-Zn} (M)	Normalized K _{d-Zn}
	Аро	Zn(II)				
Palm-ZO	244, 39.2	263, 33.9	\leq 0.014	0.35±0.02	1.95 (2) × 10 ⁻⁸	0.975
Tunn 2Q	336, 3.9	360, 3.6				
TSQ	336, 3.5	360, 3.5	≤ 0.002	0.34±0.03	$2.00(2) \times 10^{-8}$	1

Table S2. Photophysical and zinc-binding properties of Palm-ZQ and TSQ.

^a Spectroscopic data and apparent zinc dissociation constants (K_{d-Zn}) were determined in 25 mM PIPES buffer (pH 7) with 50 mM KCl and 50% (v/v) acetonitrile. ^bQuantum yield, absorption, and extinction coefficient values were taken from literature. ^cFor comparison, the K_{d-Zn} for TSQ was determined under identical conditions.

Figure S10. Zinc response of Palm-ZQ in live cell fluorescence imaging of RWPE-1 cells. (a) DIC Image. Signal intensity from Palm-ZQ, initially (b), after addition of 50 μ M ZnCl₂ (c), and after addition of 100 μ M EDTA (d). (e) Average normalized fluorescence signal of Palm-ZQ and Mitotracker red during live cell imaging. (n = 20). Signal Intensity from Mitotracker Red, initially (f), after addition of 50 μ M ZnCl₂ (g), and after addition of 100 μ M EDTA (h).

Figure S11. Zinc response of Palm-ZQ in live HeLa cells as monitored by fluorescence microscopy. (a) DIC. (b) Initial signal intensity from Palm-ZQ. (c) Emission after addition of 50 μ M ZnCl₂. (d) Signal after addition of 100 μ M EDTA.

References

(1) (a) Woodroofe, C. C.; Masalha, R.; Barnes, K. R.; Frederickson, C. J.; Lippard, S. J. *Chem. Biol.* **2004**, *11*, 1659; (b) Nolan, E. M.; Lippard, S. J. *Acc. Chem. Res.* **2009**, *42*, 193.

(2) Fahrni, C. J.; O'Halloran, T. V. J. Am. Chem. Soc. **1999**, 121, 11448.

(3) Kirin, S. I.; Noor, F.; Metzler-Nolte, N.; Mier, W. J. Chem. Educ. 2007, 84, 108.

(4) http://www.anaspec.com/html/peptide tips.html

(5) Lakowicz, J. R. *Principles of fluorescence spectroscopy*; 2nd ed.; Kluwer Academic/Plenum: New York, 1999.

- (6) Walkup, G. K.; Burdette, S. C.; Lippard, S. J.; Tsien, R. Y. J. Am. Chem. Soc. 2000, 122, 5644.
- (7) Eastman, J. W. Photochem. Photobio. 1967, 6, 55.
- (8) French, A. P.; Mills, S.; Swarup, R.; Bennett, M. J.; Pridmore, T. P. Nat. Protoc. 2008, 3, 619.