Chemo- and Diastereoselective Tandem Dual Oxidation of B(pin)-substituted Allylic Alcohols: Synthesis of B(pin)-substituted Epoxy Alcohols, 2-Keto-anti-1,3-diols and Dihydroxy-tetrahydrofuran-3-ones

Nusrah Hussain, Mahmud M. Hussain, Patrick J. Carroll and Patrick J. Walsh*

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104-6323
pwalsh@sas.upenn.edu

Supporting Information

Part 2

Table of Contents Page

1H and 13C{H} NMR spectra S26
X-ray Structure Determination S56
Computational Studies S57
References S57

Electronic Supplementary Material (ESI) for Chemical Science
This journal is © The Royal Society of Chemistry 2013
Figure S1 (1k). 300 MHz 1H and 125 MHz 13C{1H} NMR of (1E,4E)-2-methyl-1,5-diphenyl-4(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-2-yl)penta-1,4-dien-3-ol in CDCl$_3$.
Figure S2 (1l). 500 MHz 1H and 125 MHz 13C 1H NMR of (1E,4E)-2,6,6-trimethyl-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-dien-3-ol in CDCl$_3$.

-S27-
Figure S3 (1m). 500 MHz 1H and 125 MHz 13C{1H} NMR of (1E,4E)-4-benzylidene-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dec-1-en-3-ol in CDCl$_3$.
Figure S4 (1n). 500 MHz 1H and 125 MHz 13C{1H} NMR of (3E,6E)-2,2,6-trimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nona-3,6-dien-5-ol in CDCl$_3$.

-S29-
Figure S5 (1o). 500 MHz 1H and 125 MHz 13C(1H) NMR of (1E,4E)-4-methyl-1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,4-dien-3-ol in CDCl$_3$.

-S30-
Figure S6 (1p). 500 MHz 1H and 125 MHz 13C{1H} NMR of (E)-1-cyclohexenyl-3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-ol in CDCl$_3$.
Figure S7 (1q). 500 MHz 1H and 125 MHz 13C(1H) NMR of (1Z,4E)-2-bromo-1,5-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-1,4-dien-3-ol in CDCl$_3$.

-S32-
Figure S8 (1r). 500 MHz 1H and 125 MHz 13C 1H NMR of $(1E,4E)-1,5$-diphenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-1,4-dien-3-ol in CDCl$_3$.
Figure S9 (2k). 500 MHz 1H and 125 MHz 13C{1H} NMR of (2-methyl-3-phenyloxiran-2-yl)(3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methanol in CDCl₃.
Figure S10 (2l). 500 MHz 1H and 125 MHz 13C(1H) NMR of (3-tert-butyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(2-methyl-3-phenyloxiran-2-yl)methanol in CDCl$_3$.

-S35-
Figure SI1 (2m). 500 MHz 1H and 125 MHz 13C1H NMR of (2-hexyl-3-phenyloxiran-2-yl)(3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxiran-2-yl)methanol in CDCl$_3$.
Figure S12 (2n). 500 MHz 1H and 125 MHz 13C 1H NMR (3-(tert-butyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxiran-2-yl)(3-ethyl-2-methyloxiran-2-yl)methanol in CDCl$_3$.

-S37-
Figure S13 (2o). 500 MHz 1H and 125 MHz 13C(1H) NMR of (3-ethyl-2-methyl-2-methyloxiran-2-yl)(3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methanol in CDCl$_3$.

-S38-
Figure S14 (2p). 500 MHz 1H and 125 MHz 13C(1H) NMR of (7-oxabicycloheptan-1-yl)(3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxiran-2-yl)methanol in CDCl$_3$.

-S39-
Figure S15 (3k). 500 MHz 1H and 125 MHz 13C(1H) NMR of (E)-1-(2-methyl-3-phenyloxiran-2-yl)-3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-ol in CDCl$_3$.
Figure S16 (3l). 500 MHz 1H and 125 MHz 13C(1H) NMR of (E)-4,4-dimethyl-1-(2-methyl-3-phenyloxiran-2-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-en-1-ol in CDCl$_3$.

-S41-
Figure S17 (3m). 500 MHz 1H and 125 MHz 13C{1H} NMR of (E)-1-(2-hexyl-3-phenyloxiran-2-yl)-3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-ol in CDCl$_3$.
Figure S18 (3n). 500 MHz 1H and 125 MHz 13C(1H) NMR of (E)-1-(3-ethyl-2-methyloxiran-2-yl)-4,4--dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-2-en-1-ol in CDCl$_3$.

-S43-
Figure S19 (3o). 500 MHz 1H and 125 MHz 13C(1H) NMR of (E)-1-(3-ethyl-2-methyloxiran-2-yl)-3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-ol in CDCl$_3$.

-S44-
Figure S20 (3p). 500 MHz 1H and 125 MHz 13C(1H) NMR of (E)-1-(7-oxabicyclo heptan-1-y1)-3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-ol in CDCl₃.
Figure S21 (4q). 500 MHz 1H and 125 MHz 13C(1H) NMR of (Z)-2-bromo-3-phenyl-1-(3-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxiran-2-yl)prop-2-en-1-olin CDCl$_3$.

-S46-
Figure S22 (5k). 500 MHz 1H and 125 MHz 13C(1H) NMR of 1,3-dihydroxyl-1-(2-methyl-3-phenyloxiran-2-yl)-3-phenylpropan-2-one in CDCl$_3$.
Figure S23 (SI). 500 MHz 1H and 125 MHz 13C(1H) NMR of 1,3-dihydroxy-4,4-dimethyl-1-(2-methyl-3-phenyloxiran-2-yl)pentan-2-one in CDCl$_3$.
Figure S24 (5m). 500 MHz 1H and 125 MHz 13C{1H} NMR of 1-(2-hexyl-3-phenyloxiran-2-yl)-1,3-dihydroxy-3-phenylpropan-2-one in CDCl$_3$.
Figure S25 (S50). 500 MHz 1H and 125 MHz 13C(1H) NMR of 1-(3-ethyl-2-methyloxiran-2-yl)-1,3-dihydroxy-3-phenylpropan-2-one in CDCl$_3$.
Figure S26 (5p). 500 MHz 1H and 125 MHz 13C1H NMR of 1-(7-oxabicycloheptan-1-yl)-1,3-dihydroxy-3-phenylpropan-2-one in CDCl$_3$.

-S51-
Figure S27 (6k). 500 MHz 1H and 125 MHz 13C(1H) NMR of 4-hydroxy-5-(hydroxyl(phenyl)methyl)-5-methyl-2-phenyldihydrofuran-3-(2H)-one in CDCl$_3$.
Figure S28 (6m). 500 MHz 1H and 125 MHz 13C{1H} NMR of 5-hexyl-4-hydroxy-5-(hydroxyl(phenyl)methyl-2-phenyldihydrofuran-3-2(H)-one in CDCl$_3$.

-S53-
Figure S29 (6o). 500 MHz 1H and 125 MHz 13C(1H) NMR of 4-hydroxy-5-(1-hydroxypropyl)-5-methyl-phenyldihydrofuran-3(2H)-one in CDCl$_3$.
Figure S30 (6p). 500 MHz 1H and 125 MHz 13C(1H) NMR of 4,6-dihydroxy-2-phenyl-1-oxaspiro[4,5]decan-3-one in CDCl$_3$.

-S55-
Figure S31. ORTEP drawing of 4-hydroxy-5-(hydroxyl(phenyl)methyl)-5-methyl-2-phenyldihydrofuran-3-(2H)-one (6k) with 30% probability thermal ellipsoids.
Preliminary Computational Studies:

All calculations were optimized using GAUSSIAN09, B3LYP or M06-2X functional with the 6-31G(d) or 6-311G(d,p), basis set in the gas phase and in dichloromethane using CPCM solvation model and UFF radii. Optimizing transition state structures using (U)B3LYP with guess=(mix, always) did not revealed any changes in spin state. Frequency analysis was used to characterize each stationary point as minima or transition state structure. Further, IRC calculations were carried out on model systems to connect transition state structures to minima.

Figure S31. Relative barriers for epoxidations of model alkenes. All structures were calculated using B3LYP/6-31G(d) in gas phase and in dichloromethane (CPCM;UFF radii), in parenthesis, using M06-2X/6-311G(d,p). Reported energies are in kcal/mol. Pinacolato ligand was modeled as C2H4O2.

References:
