# High CO<sub>2</sub>/N<sub>2</sub>/O<sub>2</sub>/CO Separation in a Chemically Robust Porous Coordination Polymer with Low Binding Energy

Jingui Duan,<sup>a</sup> Masakazu Higuchi,<sup>a</sup> Rajamani Krishna,<sup>b</sup> Tomokazu Kiyonaga,<sup>a</sup> Yosuke Tsutsumi,<sup>c</sup> Yohei Sato,<sup>d</sup> Yoshiki Kubota,<sup>d,e</sup> Masaki Takata,<sup>e</sup> and Susumu Kitagawa\*<sup>a,c</sup>

<sup>*a*</sup> Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. Email: kitagawa@icems.kyoto-u.ac.jp.

<sup>b</sup> Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

<sup>c</sup> Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

<sup>*d*</sup> Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.

<sup>e</sup> Spring-8 Center, RIKEN 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.

#### **Reagents and general methods**

All the reagents and solvents were commercially available and used as received. The FTIR spectra were recorded in the range of 4000-400 cm<sup>-1</sup> on a Nicolet ID5 ATR spectrometer. Thermal analyses were performed on a Rigaku TG8120 instruments from room temperature to 600 °C at a heating rate of 5 °C/min under flowing nitrogen. The dynamic cycling behaviours of temperature-dependent gravimetric adsorption studies were also used the same TG machine. The attached gas was changed to  $CO_2$  from N<sub>2</sub>. Powder X-ray diffraction (PXRD) patterns were collected using a Bruker AXS D8 Discover powder diffractometer equipped with a Cu Ka X-ray source at 40 kV, 40 mA. Simulated powder patterns from single-crystal X-ray diffraction data were generated using Mercury 1.4.2 software.

#### Single crystal X-ray study

All measurements were made on a Rigaku Saturn 724+ diffractometer using graphite monochromated Mo-Ka radiation. The data were collected at a temperature of 173K to a maximum 20 value of 50.2°. A total of 720 oscillation images were collected. A sweep of data was done using  $\omega$  scans from -110.0 to 70.0° in 0.50° step, at  $\chi = 45.0°$  and  $\varphi = 0.0°$ . The exposure rate was 128.0 [sec./°]. The detector swing angle was -20.15°. A second sweep was performed using  $\omega$  scans from -110.0 to 70.0° in 0.50° step, at  $\gamma$ =45.0° and  $\varphi$  = 90.0°. The exposure rate was 128.0 [sec./°]. The detector swing angle was -20.15°. The crystal-to-detector distance was 44.95 mm. Readout was performed in the 0.141 mm pixel mode. Data were collected and processed using CrystalClear<sup>1</sup>. The linear absorption coefficient,  $\mu$ , for Mo-K $\alpha$  radiation is 8.987 cm<sup>-1</sup>. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.461 to 0.835. The data were corrected for Lorentz and polarization effects. The structure was solved by direct methods<sup>2</sup> and expanded using Fourier techniques. Some non-hydrogen atoms were refined anisotropically, while the rest were refined isotropically. Hydrogen atoms were refined using the riding model. Neutral atom scattering factors were taken from Cromer and Waber<sup>3</sup>. Anomalous dispersion effects were included in Fcalc<sup>4</sup>; the values for  $\Delta f$  and  $\Delta f''$  were those of Creagh and McAuley<sup>5</sup>. The values for the mass attenuation coefficients are those of Creagh and Hubbell<sup>6</sup>. All calculations were performed using the CrystalStructure<sup>1</sup> crystallographic software package except for refinement, which was performed using SHELXL-97<sup>7</sup>.

### **Adsorption Experiments**

Before the measurement, the solvent-exchanged sample (about 100 mg) was prepared by immersing the as-synthesized samples in methanol for three days to remove the nonvolatile solvents, and the extract was decanted every 8 h and fresh methanol was replaced. The completely activated sample was obtained by heating the solvent-exchanged sample at 120 °C under a dynamic high vacuum for 20 h. In the gas adsorption measurement, ultra-high-purity grade were used throughout the adsorption experiments. Gas adsorption isotherms were obtained using a Belsorp-mini volumetric adsorption instrument from BEL Japan Inc. using the volumetric technique. To provide high accuracy and precision in determining  $P/P_0$ , the saturation pressure  $P_0$  was measured throughout the N<sub>2</sub> analyses by means of a dedicated saturation pressure transducer, which allowed us to monitor the vapor pressure for each data point.

#### Moisture and chemical stability experiments

About moisture experiment, approximately 50 mg of degassed PCP-1 samples were treated in the oven with different conditions (25°C, 80%RH, 50°C, 80%RH and 100°C, 80%RH,) for 24h, respectively. After the temperature cool down, partial samples were used for PXRD patterns collections and partial samples were used for gas sorption works (degassed at 120°C for 24h). For chemical treatment, fresh PCP-1 was soaked (around 50-60 mg for each) into three bottles (4 ml). HCl and NaOH were used to turn the pH of the solution to 2, 7 and 12. The bottles were heated to 100°C for 24h. After the temperature cool down, partial samples were used for PXRD patterns collections and partial samples were used for gas sorption works (washed by methanol three times and degassed at 120°C for 24h).

#### Fitting of pure component isotherms

The experimentally measured excess loadings of CO<sub>2</sub>, CO, O<sub>2</sub>, and N<sub>2</sub> obtained at temperatures at 195 K and 273 K were first converted to absolute loadings before data fitting. For this purpose the pore volume used is  $0.1218 \text{ cm}^3/\text{g}$ . It generated from the N<sub>2</sub> adsorption experiment. The procedure for converting excess loadings to absolute loadings is described in detail in the Supporting Information accompanying Wu et al.<sup>8</sup>

The isotherm data at both temperatures were fitted with the Langmuir-Freundlich model

$$q = q_{sat} \frac{bp^{\nu}}{1 + bp^{\nu}} \tag{1}$$

with T-dependent parameter b

$$b_{A} = b_{0} \exp\left(\frac{E}{RT}\right)$$
(2)

The Langmuir-Freundlich parameters for adsorption of CO<sub>2</sub>, CO, O<sub>2</sub>, and N<sub>2</sub> in PCP-1 are provided in Table 1.

#### Isosteric heat of adsorption

For use of PCP-1 in a pressure swing adsorption device, the isosteric heat of adsorption of  $CO_2$  is important, because it largely dictates the energy required in the regeneration cycle. The isosteric heat,  $Q_{st}$ , defined as

$$Q_{st} = RT^2 \left(\frac{\partial \ln p}{\partial T}\right)_q \tag{3}$$

were determined using the pure component isotherm fits. The calculations of,  $Q_{st}$ , are based on the use of the Clausius-Clapeyron equation. The data for other materials have been collected from a variety of sources.<sup>8-11</sup>

In order to get the precise information of the isosteric heat of  $CO_2$  in PCP-1, a virial-type<sup>12</sup> expression comprising the temperature-independent parameters  $a_i$  and  $b_i$  was employed to calculate the enthalpies of adsorption for  $CO_2$  (at 263, 273 and 283K) on PCP-1. In each case, the data were fitted using the equation:

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$
 (4)

Here, P is the pressure expressed in Torr, N is the amount adsorbed in mmol/g, T is the temperature in K,  $a_i$  and  $b_i$  are virial coefficients, and m, n represent the number of coefficients required to adequately describe the isotherms (m and n were gradually increased until the contribution of extra added a and b coefficients was deemed to be statistically insignificant towards the overall fit, and the average value of the squared deviations from the experimental values was minimized).

$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i \tag{5}$$

Here,  $Q_{st}$  is the coverage-dependent isosteric heat of adsorption and R is the universal gas constant.

#### Calculations of adsorption selectivity

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$
 (6)

In equation (6),  $q_1$  and  $q_2$  are the *absolute* component loadings of the adsorbed phase in the mixture. In all the calculations to be presented below, the calculations of  $S_{ads}$  are based on the use of the Ideal Adsorbed Solution Theory <sup>13</sup> of Myers and Prausnitz.<sup>14</sup>

#### Temperature-programmed desorption (TPD) of NH<sub>3</sub>

Evacuated PCP-1 (30mg) was loaded in the center of the U-type cell. The system was then degassed at 100°C for 5h. After the temperature cool down, NH<sub>3</sub> gas (26 ml/min) was introduced to pass through the cell for 30mins. In order to wash the free NH<sub>3</sub>, the He gas (30 ml/min) was used to blow the cell for another 60mins. The TPD data were collected using a heating rate of 5 K/min under He (30 mL/min) with Q-mass (m/z = 16) as a detector.

#### Packed bed absorber breakthrough simulations

The separation of CO<sub>2</sub>/CO/O<sub>2</sub>/N<sub>2</sub> gas mixtures is carried out in fixed bed adsorption units. In order to demonstrate the separation potential of PCP-1, we performed breakthrough simulations using the methodology described in earlier works. <sup>8-11, 15-17</sup> Experimental validation of the breakthrough simulation methodology is available in the published literature.<sup>8, 10, 18, 19</sup> Fig. S15 shows a schematic of a packed bed adsorber packed with PCP-1. The following parameter values were used: length of packed bed, L = 0.1 m; fractional voidage of packed bed, e = 0.4; superficial gas velocity at inlet of adsorber, u = 0.04 m/s, framework density of PCP-1, r = 974 kg/m<sup>3</sup>. The inlet gas is a quaternary mixture CO<sub>2</sub>/CO/O<sub>2</sub>/N<sub>2</sub> at 100 kPa, with partial pressures for each component of 25 kPa. The *x*-axis in is dimensionless time dimensionless time, *t*, defined by dividing the actual time, *t*, by the

characteristic time,  $\frac{L\varepsilon}{u}$ .



**Fig. S1** Infrared spectra. (a) H<sub>3</sub>BTN, (b) as-synthesized PCP-1, (c) activated PCP-1. Note the absence of the vibration frequencies of the solvent DMF and methanol molecules in the activated samples.



Fig. S2 TG of PCP-1: as-synthesized samples and completely activated samples (green).



**Fig. S3** The PXRD patterns of PCP-1: as-synthesized, completely activated samples and the activated samples treated at varied environment along with the simulated XRD pattern from the single crystal data.



Fig. S4 The coordination connection of metal-oxygen chain in PCP-1.



**Fig. S5** Two different coordination modes  $(\mu 2 - \eta^1 : \eta^1, \mu 2 - \eta^2 : \eta^1)$  of three carboxylate groups of BTN ligand (b).



Fig. S6 Molecular structure of PCP-1. Thermal ellipsoids are drawn at 30% probability.



Fig. S7 The Connolly surface diagram and the purple ball display the space between two adjacent

BTN ligands in PCP-1.



Fig. S8 The Connolly surface diagram displays the irregular channels of PCP-1 (inner surfaces: pink, outer surfaces: grey).



Fig. S9 The Connolly surface diagram displays the two dimensional irregular tunnels of PCP-1



(inner surfaces: pink, outer surfaces: grey).

Fig. S10 N<sub>2</sub> adsorption isotherm and pore size distributions of PCP-1 at 77 K.



Fig. S11 Isosteric heat of CO<sub>2</sub> adsorption for PCP-1 at low surface coverage.



**Fig. S12** The calculated virial equation isotherms parameters fit to the experimental CO<sub>2</sub> data of PCP-1.



Fig. S13 NH<sub>3</sub>-TPD result of PCP-1.

Table S1 Comparison of NH<sub>3</sub>-TPD results of PCP-1 and other PCPs.

| РСР                       | T <sub>des</sub> (°C) | D (mmol/g) obsd / calcd |
|---------------------------|-----------------------|-------------------------|
| MIL-101(Cr) <sup>20</sup> | 260                   | 2.91 / 2.94             |
| La-BTTc <sup>21</sup>     | 430                   | 1.39 /1.69              |
| PCP-1                     | 95                    | 0.52 / 1.25             |

|                                                      | CO <sub>2</sub> | 02   | N <sub>2</sub> | co    |
|------------------------------------------------------|-----------------|------|----------------|-------|
| Kinetic diameter (Å)                                 | 3.3             | 3.46 | 3.64           | 3.76  |
| Dipole moment (D)                                    | 0               | 0    | 0              | 0.117 |
| Quadruple moment $10^{40} \theta$ (cm <sup>2</sup> ) | 13.4            | 1.3  | 4.7            | 8.3   |
| Polarizability (Å <sup>3</sup> )                     | 2.65            | 1.60 | 1.76           | 1.95  |

Table S2 List of physical and electronic parameters for the adsorbate molecules

**Table S3** Langmuir-Freundlich parameters for adsorption of  $CO_2$ , CO,  $O_2$ , and  $N_2$  in PCP-1. The isotherm fits are based on data obtained at 195 K and 273 K. The experimentally measured excess loadings were first converted to absolute loadings before data fitting.

|                 | $q_{ m sat}$ mol kg <sup>-1</sup> | $b_0$<br>Pa <sup>-<math>\nu</math></sup> | <i>E</i><br>kJ mol <sup>-1</sup> | <i>v</i><br>dimensionless |
|-----------------|-----------------------------------|------------------------------------------|----------------------------------|---------------------------|
| CO <sub>2</sub> | 3.9                               | 7.26×10 <sup>-9</sup>                    | 21.4                             | 0.75                      |
| СО              | 1.7                               | 4.18×10 <sup>-10</sup>                   | 17.7                             | 1                         |
| $O_2$           | 1.8                               | 1.15×10 <sup>-9</sup>                    | 15                               | 1                         |
| $N_2$           | 1.6                               | 6.94×10 <sup>-10</sup>                   | 16                               | 1                         |



Fig. S14 Schematic of a packed bed adsorber.



Fig. S15 Breakthrough characteristics of adsorber packed with PCP-1 and maintained at isothermal conditions at 273 K. The inlet gas is a binary mixture (a) CO<sub>2</sub>/CO, (b) CO<sub>2</sub>/O<sub>2</sub>, and (c) CO<sub>2</sub>/N<sub>2</sub> at 100 kPa. The partial pressure of CO<sub>2</sub> in all three cases is maintained at 25 kPa.



**Fig. S16** Breakthrough characteristics of an adsorber packed with PCP-1 and maintained at isothermal conditions at 195 K and 273K, respectively. The inlet gas is a quaternary mixture  $CO_2/CO/O_2/N_2$  at 100 kPa, with partial pressures for each component of 25 kPa. The data shown in (a: 195K and b: 273K) are for the shorter times in order to highlight the breakthrough of the more poorly adsorbed components.



**Fig. S17** Calculations using Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz for  $CO_2/CO$ ,  $CO_2/O_2$ , and  $CO_2/N_2$  selectivities for  $15/1/4/80 CO_2/CO/O_2/N_2$  gas mixtures maintained at isothermal conditions at (a) 195 K, and (b) 273 K.



**Fig. S18** Breakthrough characteristics of an adsorber packed with PCP-1 and maintained at isothermal conditions at 195 K (a) and 273 K (b). The inlet gas is a 15/1/4/80 CO2/CO/O2/N2 quaternary mixture at 100 kPa.



**Fig. S19** Dynamic adsorption studies of PCP-1 using TGA. Experimental mass changes are shown in pure CO<sub>2</sub> (red circles).



Fig. S20 The powder synchrotron X-ray diffraction pattern of PCP-1 with CO<sub>2</sub> at different pressure.



Fig. S21 CO<sub>2</sub> adsorption profiles of PCP-1 before and after chemical treatment. (Desorption were omitted for clearly, as all of them show complete desorption.)



Fig. S22 Photos of PCP-1 indicate the crystalline after water treatment at different pH and  $100^{\circ}$ C



Fig. S23 CO<sub>2</sub> adsorption of PCP-1 before and after moisture treatment (Desorption were omitted for clearly, as all of them show complete desorption).



Fig. S24 Adsorption isotherms of energy gas in PCP-1 at 195 K.



Fig. S25 Adsorption isotherms of ethanol and water in PCP-1 at 298 K.



**Fig. S26** This figure shows the separation of EtOH/H<sub>2</sub>O=1:1 (1ul) at 220°C on GC. The column (radius: 2mm, length: 20cm) with degassed PCP-1 (15cm) was used (left peak is EtOH and right one is H<sub>2</sub>O).

# Notation

| b                | Langmuir-Freundlich constant, $Pa^{-\nu}$                     |
|------------------|---------------------------------------------------------------|
| L                | length of packed bed adsorber, m                              |
| $p_{\rm i}$      | partial pressure of species <i>i</i> in mixture, Pa           |
| $p_{\rm t}$      | total system pressure, Pa                                     |
| $q_{ m i}$       | component molar loading of species $i$ , mol kg <sup>-1</sup> |
| $q_{\mathrm{t}}$ | total molar loading in mixture, mol kg <sup>-1</sup>          |
| $q_{ m sat}$     | saturation loading, mol kg <sup>-1</sup>                      |
| $Q_{\rm st}$     | isosteric heat of adsorption, J mol <sup>-1</sup>             |
| R                | gas constant, 8.314 J mol <sup>-1</sup> K <sup>-1</sup>       |
| $S_{ m ads}$     | adsorption selectivity, dimensionless                         |
| t                | time, s                                                       |
| Т                | absolute temperature, K                                       |
| и                | superficial gas velocity in packed bed, m s <sup>-1</sup>     |
| Ζ                | distance along the adsorber, m                                |

# Greek letters

| ~ | voidage of packe   | d had | dimanaian  | 1000  |
|---|--------------------|-------|------------|-------|
| ε |                    | a nea | annension  | iess. |
| 0 | , orange of partie |       | 4111101011 |       |

- *v* exponent in Langmuir-Freundlich isotherm, dimensionless
- $\rho$  framework density, kg m<sup>-3</sup>
- $\tau$  time, dimensionless

# Reference

- 1. R. C.-T.-. CrystalStructure 4.1: Crystal Structure Analysis Package, Japan.
- 2. M. C. Burla;, R. Caliandro;, M. Camall;, B. Carrozzini;, G. L. Cascarano;, L. D. Caro;, C. Giacovazzo, G. Polidori, D. Siliqi and R. Spagna, *SIR2008*, 2007.
- 3. D. T. W. Cromer, J. T.; "International Tables for X-ray Crystallography", Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A, 1974.
- 4. J. A. Ibers and W. C. Hamilton, *Acta Crystallogr*, 1964, **17**, 781-&.
- 5. D. C. M. Creagh, W.J.; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, 1992, 219-222.
- 6. D. C. H. Creagh, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 (1992).
- 7. G. M. Sheldrick, Acta Crystallographica Section A 2008, 64, 112-122.
- 8. H. Wu, K. Yao, Y. Zhu, B. Li, Z. Shi, R. Krishna and J. Li, *J. Phys. Chem. C*, 2012, **116**, 16609-16618.
- 9. S. C. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna and B. Chen, *Nat. Commun.*, 2012, **3**, 954.
- 10. Y. He, R. Krishna and B. Chen, *Energy Environ. Sci.*, 2012, **5**, 9107-9120.
- 11. Y. He, S. Xiang, Z. Zhang, S. Xiong, C. Wu, W. Zhou, T. Yildirim, R. Krishna and B. Chen, *J. Mater. Chem. A*, 2013, **1**, 2543-2551.
- 12. J. L. C. Rowsell and O. M. Yaghi, Journal of the American Chemical Society 2006, 128,

1304-1315.

- J. H. Jang, M. Iastrebner, G. Taborda, J. Arbelbide, F. Sackmann, G. Klein, H. Bernard, C. Jozami, K. Kim, D. Kim and C. Jung, *Haematologica-the Hematology Journal* 2010, 95, 553-554.
- 14. A. L. Myers and J. M. Prausnitz, *A.I.Ch.E.J.*, 1965, **11**, 121-130.
- 15. R. Krishna and J. R. Long, J. Phys. Chem. C, 2011, 115, 12941-12950.
- 16. R. Krishna and J. M. van Baten, Sep. Purif. Technol., 2012, 87, 120-126.
- 17. R. Krishna and R. Baur, Sep. Purif. Technol., 2003, 33, 213-254.
- 18. E. D. Bloch, W. L. Queen, R. Krishna, J. M. Zadrozny, C. M. Brown and J. R. Long, *Science*, 2012, **335**, 1606-1610.
- 19. Z. R. Herm, B. M. Wiers, J. M. Van Baten, M. R. Hudson, P. Zajdel, C. M. Brown, N. Maschiocchi, R. Krishna and J. R. Long, *Science*, 2013, **340**, 960-964.
- 20. Y. Y. Pan, B. Z. Yuan, Y. W. Li and D. H. He, Chem. Commun., 2010, 46, 2280-2282.
- 21. T. Kajiwara, M. Higuchi, A. Yuasa, H. Higashimura and S. Kitagawa, *Chem. Commun.*, 2013, DOI: 10.1039/C3CC43384F, .