Supporting Information for:

Electronic Tuning of Fluorescent 8-Aryl-Guanine Probes for Monitoring DNA Duplex-Quadruplex Exchange

Michael Sproviero, Kaila L. Fadock, Aaron A. Witham, Richard A. Manderville,* Purshotam Sharma and Stacey D. Wetmore*

Table of Contents:

1. Experimental Section ..S2
2. Figure S1. DFT calculations of Fur dG ...S15
3. Figure S2. DFT calculations of CNPh dG ...S16
4. CD spectra of modified TBA duplex structures ...S17
5. Figures S4-S12. NMR spectra of CNPh dG and 1-3 ..S18
6. Table S1. ESI-MS Analysis of 8-Aryl-G Modified TBA OligonucleotidesS22
7. Figures S13-S15. ESI-MS spectrum of Fur dG and CNPh dG modified TBAS23
8. S16, S17. Mol2 files of the CNPh dG and Fur dG nucleoside adductsS24
9. Figure S18. Percent distribution of θ (degrees) and χ (degrees) dihedral angles throughout the 20 ns MD simulations ...S27
10. Table S2. Occupancies for the Hydrogen Bonds Between the G5-Adduct and the Paired Bases in G-quartet over the Duration of the MD SimulationsS28
11. Figures S19-S28. RMSDs for MD simulations ..S27
Experimental Section

Materials and Methods: Boronic acids, Pd(OAc)$_2$, 3,3',3''-phosphinidnetris-(benzenesulfonic acid) trisodium salt (TPPTS), and other commercial compounds were used as received. The synthesis of 8-bromo-2'-deoxyguanosine (8-Br-dG) was performed according to literature procedures by treating dG with N-bromosuccinimide in water–acetonitrile.1 Suzuki cross-coupling reactions of boronic acids with 8-Br-dG to afford Fur2 dG and CNPh3 dG were performed as described previously by Western and coworkers.4 NMR spectra were recorded on Bruker 300 or 400 MHz spectrometers in either DMSO-d_6 or CDCl$_3$ referenced to TMS (0 ppm) or the respective solvent. All UV–vis and fluorescence emission spectra were recorded with baseline correction and stirring using 10 mm light path quartz glass cells. Any water used for buffers or spectroscopic solutions was obtained from a filtration system (18.2 MΩ). High-resolution mass spectra were recorded on an Agilent Q-Tof instrument, operating in nanospray ionization at μL/min detecting positive ions.

Oligonucleotide Synthesis: Oligonucleotide synthesis for the 8-aryl-dG modified TBA oligonucleotide (5′-GGTTG$_5$G$_6$TG$_6$TGGTTGG) with modifications at G$_5$, G$_6$ or G$_8$ = Fur2 dG or CNPh3 dG was carried out on a 1 μmol scale on a BioAutomation Corp. MerMade 12 automatic DNA synthesizer using standard β-cyanoethylphosphoramidite chemistry, as outlined previously.2 Following synthesis, oligonucleotides were cleaved from the solid support, deprotected using 2 mL of 30% ammonium hydroxide solution at 55 °C for 12 h and purified by reverse phased HPLC. Synthesis of the Fur2 dG-phosphoramidite (3′-O-[(2-cyanoethoxy) (diisopropylamino)phosphino]-5′-O-(4,4′-dimethoxytrityl)-N2-dimethylamidyl-8-(2''-furyl)-2'-deoxyguanosine) for use on the DNA synthesizer was performed as previously published.2
The nucleoside $\text{CNPh}dG$ was converted into a phosphoramidite using the synthetic strategy outlined in Scheme 1.

Scheme 1. Synthesis of $\text{CNPh}dG$ Phosphoramidite.

8-(4''-Cyanophenyl)-2'-deoxyguanosine ($\text{CNPh}dG$): Pd(OAc)$_2$ (22mg, 0.1mmol), TPPTS (148 mg, 25 mmol), Na$_2$CO$_3$ (800 mg, 7.5 mmol), 8-Bromo-dG (1.30g, 3.75 mmol) and 4-cyanophenyl-boronic Acid (0.85 g, 5.63 mmol) were placed in a round bottomed flask fitted with a condenser and reverse filled with argon. Degassed 2:1 H$_2$O:CH$_3$CN (35mL) solution was added and the solution was heated to 100°C for 4 hours. Following completion the mixture was diluted with 200 mL of H$_2$O and the pH was adjusted to 7.5 with 1.0 M aqueous HCl. The mixture was then cooled to 0°C, filtered and dried to yield 1.03 g (80% yield) of a white-grey powder. 1H NMR (300 MHz, DMSO-d$_6$) δ: 7.97 (d, $J = 8.3$ Hz, 2H), 7.87 (d, $J = 8.3$ Hz, 2H), 6.87 (bs, 2H), 6.08 (t, $J = 7.4$ Hz, 1H), 5.52 (bs, 1H), 5.18 (bs, 1H), 4.36 (m, 1H), 3.82 (m, 1H), 3.68 (dd, $J = 4.3$, 12 Hz, 1H), 3.53 (dd, $J = 4.3$, 12 Hz, 1H), 3.16 (m, 1H), 2.05 (m,1H). 13C NMR (300 MHz, DMSO-d$_6$) δ: 160.7, 156.0, 152.6, 144.4, 135.0, 133, 132.5, 129.6, 128.0, 118.6, 117.9, 111.4, 88.1, 84.8, 71.2, 62.2, 36.9. HRMS calcd for C$_{17}$H$_{17}$N$_6$O$_4^+$ [M+H$^+$] 369.1306, found 369.1321.
N²-(Dimethylformamidyl)-8-(4''-cyano phenyl)-2'-deoxyguanosine (1):

\[\text{CNPh}^\text{dG} \] (1.21 g, 3.3 mmol) was placed in 15 mL dry DMF under argon. N,N-Dimethylformamide diethyl acetal (2.7 mL, 13.5 mmol) was then added and the mixture was allowed to stir for 5 hours. The reaction mixture was then evaporated to dryness and the solid washed with MeOH and dried to yield 1.02 g (91% yield) of the white coloured product. \(^1\)H NMR (300 MHz, DMSO-d₆) δ: 8.48 (s, 1H), 8.00 (d, \(J = 8.3\) Hz, 2H), 7.85 (d, \(J = 8.3\) Hz, 2H), 6.11 (t, \(J = 7.7\) Hz, 1H), 5.75 (bs, 1H), 5.30 (bs, 1H), 4.44 (m, 1H), 3.86 (m, 1H), 3.67 (dd, \(J = 3.5, 12\) Hz, 1H), 3.55 (dd, \(J = 3.8, 11.9\) Hz, 1H), 3.24 (m, 1H), 3.09 (s, 3H), 3.00 (s, 3H), 2.07 (m, 1H). \(^1\)C NMR (300 MHz, DMSO-d₆) δ: 157.7, 151.6, 145.0, 135.0, 133.0, 132.6, 129.7, 128.1, 121.3, 118.6, 111.4, 88.3, 85.2, 71.3, 62.3, 40.5, 34.4. HRMS calcd for C\(_{20}\)H\(_{22}\)N\(_7\)O\(_4\)\(^+\) [M+H\(^+\)] 424.1733, found 424.1714.

5'-O-(4,4'-Dimethoxytrityl)-N²-(dimethylformamidyl)-8-(4''-cyanophenyl)-2'-deoxyguanosine (2):

Compound 1 (1.14 g, 2.7 mmol) was co-evaporated from dry pyridine (3 x 5 mL) in a round bottomed flask. The round bottomed flask was then fitted with a constant pressure dropping funnel and reverse filled with argon. Pyridine (15 mL) was added to the round bottomed flask while DMT-Cl (1.28 g, 3.78 mmol) was placed in the dropping funnel, and dissolved in 15 mL dry pyridine. The addition of the DMT-Cl solution was added over 1 hour and the reaction was allowed to stir at room temperature for 3 h under argon and was monitored by TLC. Upon completion, the mixture was diluted with methylene chloride (10 mL) and washed with water (2 x 10 mL). Triethylamine (TEA, 1 mL) was added and the mixture was evaporated to dryness. The solid was then dissolved in dichloromethane (3 mL) and hexanes (10 mL) was added and the reaction was stirred overnight. The resulting suspension was filtered, and the solid was loaded onto a silica column and eluted with MeOH:CH\(_2\)Cl\(_2\):TEA (5:90:5) to afford product 2 as a white powder (73% yield). \(^1\)H NMR (300 MHz, DMSO-d₆) δ: 8.36 (s, 1H), 7.99 (d, \(J = 8.6\) Hz, 2H).

S4
Hz, 2H), 7.71 (d, J = 8.6 Hz, 2H), 7.42-7.39 (m, 2H), 7.31-7.19 (m, 7H), 6.79-6.74 (m, 4H), 6.24-6.19 (m, 1H), 4.69 (m, 1H), 4.07 (m, 1H), 3.76 (s, 3H), 3.75 (s, 3H), 3.50 (m, 1H), 3.36-3.27 (m, 2H), 3.05 (s, 3H), 2.94 (s, 3H), 2.50 (TEA), 3.32 (m, 1H), 1.00 (TEA).

13C NMR (300 MHz, DMSO-d6) δ: 159.0, 158.4, 158.38, 156.8, 152.1, 147.9, 145.4, 136.3, 136.2, 135.1, 132.6, 130.4, 130.3, 128.5, 128.2, 127.2, 121.3, 118.8, 113.4, 113.3, 86.6, 86.2, 84.6, 72.6, 64.8, 55.6, 41.6, 38.2, 35.3. HRMS calcd for C41H40N7O6+ [M+H+] 726.3040, found 726.3060.

3'-O-[(2-Cyanoethoxy)(diisopropylamino)phosphino]-5'-O-(4,4'-dimethoxytrityl)-N2-(dimethylformamidyl)-8-(4''-cyanophenyl)-2'-deoxyguanosine (3): Compound 2 (0.500 g, 0.706 mmol) was co-evaporated from dry THF (3 x 5 mL), reverse filled with argon and dissolved in 10 mL dry, degassed CH2Cl2. To this was added dry, degassed TEA (0.4 mL, 2.83 mmol) and 2-cyanoethyl N,N-diisopropylchlorophosphoramide (0.24 mL, 1.06 mmol). The reaction was monitored via TLC and, upon completion, washed successively with saturated NaHCO3 solution. The organic phase was separated, dried and loaded onto flash chromatography column eluting with 92:5:3 CH2Cl2:MeOH:TEA. The phosphoramidite 3 was isolated as an off-white foam in 72% yield. 1H NMR (400 MHz, CDCl3) δ: 9.05-8.89 (m, 1H), 8.43 (s, 1H), 8.05 (d, J = 8.4 Hz, 2H), 7.72-7.67 (m, 2H), 7.34 (m, 2H), 7.26-7.13 (m, 8H), 6.72-6.67 (m, 4H), 6.12 (m, 1H), 5.16 (m, 1H), 4.20 (m, 1H), 3.73 (s, 3H), 3.72 (s, 3H), 3.64 (m, 1H), 3.55-2.27 (m, 7H), 3.05 (s, 3H), 2.92 (s, 3H), 2.50 (t, J = 6.1 Hz, 1H), 2.40-2.22 (m, 2H), 1.39 (d, J = 6.4 Hz, 1.13 (t, J = 7.4 Hz, 6H), 1.02 (t, J = 6.1 Hz, 6H). 13C NMR (400 MHz, CDCl3) δ: 158.4, 157.6, 156.1, 151.2, 144.6, 135.8, 134.4, 132.2, 130.2, 130.0, 128.1, 127.7, 126.8, 121.3, 118.5, 117.5, 113.0 112.9, 86.1, 84.2, 83.8, 63.4, 62.7, 58.4, 55.2, 45.3, 43.3 24.6, 20.1. HRMS calcd for C50H57N9O7P+ [M+H+] 926.4113, found 926.4130.
Oligonucleotide Purification and Sample Preparation: The 8-aryl-G-modified TBA oligonucleotide solutions were first filtered using syringe filters (PVDF 0.20 μm), and concentrated under diminished pressure. Purification was performed using an Agilent 1200 series HPLC instrument equipped with an autosampler, a diode array detector (monitored at 258 nm and λ_{Abs} of the incorporated modified nucleoside), fluorescence detector (monitored at λ_{ex} and λ_{em} of the incorporated modified nucleoside), and autocollector. Separation was carried out at 50 °C using a Phenomenex clarity 5 μm reversed-phase (RP) semipreparative C18 column (100 × 10 mm) with a flow rate of 3.5 mL/min, and various gradients of buffer B in buffer A (buffer A = 95:5 aqueous 50 mM TEAA, pH 7.2/acetonitrile; buffer B = 30:70 aqueous 50 mM TEAA, pH 7.2/ acetonitrile. Collected DNA samples were lyophilized to dryness and redissolved in 18.2 MΩ water for quantification by UV−vis measurement using ε_{260}. Extinction coefficients were obtained from the following website: http://www.idtdna.com/analyzer/applications/oligoanalyzer. The 8-aryl-G modified TBA oligonucleotides were assumed to have the same extinction coefficient as the natural TBA oligonucleotide. In all cases of hybridization, oligonucleotides were annealed by heating at 90 °C for 10 min, cooling to room temperature, and refrigerating until analysis.

MS Analysis of Oligonucleotides: MS experiments for DNA identification were conducted on a Bruker AmaZon quadrupole ion trap SL spectrometer. Masses were acquired in the negative ionization mode with an electrospray ionization source. Oligonucleotide samples were prepared in 90% Milli-Q filtered water/10% methanol containing 0.1 mM ammonium acetate. Full scan MS spectra were obtained by direct infusion at a rate of 5−10 μL/min. The capillary and cone voltages were optimized for each analyte and varied from 2.5 to 3.5 kV and
25–35 V, respectively. A source offset of 60 V was used for all samples. The desolvation temperature was between 250 and 350 °C.

UV Melting: All thermal melting temperatures (T_m) of oligonucleotides were measured using a Cary 300-Bio UV–vis spectrophotometer equipped with a 6 x 6 multicell Peltier block-heating unit using Hellma 114-QS 10 mm light path cells. Oligonucleotide samples were prepared in 100 mM M$^+$-Phosphate, pH 7.0 with 100 mM MCl (M$^+$ = Na$^+$ or K$^+$), using equivalent amounts (6 µM) of the unmodified or 8-aryl-dG modified TBA oligonucleotide and its complementary strand. The UV absorption (at 260 nm for duplexes and 295 nm for G-quadruplexes) was monitored as a function of temperature and consisted of forward-reverse scans from 10 to 90 °C at a heating rate of 1 °C/min, which was repeated five times. The T_m values were determined using hyperchromicity calculations provided in the Varian Thermal software.

Circular Dichroism (CD): Spectra were recorded on a Jasco J-815 CD spectropolarimeter equipped with a 1 × 6 Multicell block thermal controller and a water circulator unit. Measurements were carried out in 100 mM M$^+$-phosphate, pH 7.0 with 100 mM MCl (M = Na$^+$ or K$^+$), using 6 µM of the unmodified or 8-aryl-G modified TBA oligonucleotide and its complementary strand in equivalent amounts. Quartz glass cells (110-QS) with a light path of 1 mm were used for measurements. Spectra were collected at 10 °C between 200 and 400 nm, with a bandwidth of 1 nm and scanning speed at 100 nm/min. The spectra were the averages of five accumulations that were smoothed using the Jasco software.

Photophysical Properties of CNPhdG: Stock solutions of CNPhdG (4 mM) were prepared in DMSO due to limited solubility in other solvents. Experimental spectroscopic solutions contained ≤ 1% DMSO and were prepared in reagent grade solvents (DMSO, acetonitrile,
acetone, chloroform, and tetrahydrofuran) to a final volume of 2 mL containing 40 μM CNPhdG. UV-Vis spectral measurements were observed from 220 to 400 nm with background correction to remove spurious solvent absorbance. Fluorescence emission spectra from 10 nm above the excitation wavelength to 600 nm were recorded with background correction using the absorbance maxima of CNPhdG as the excitation wavelength. All UV-Vis and fluorescence emission spectra were recorded with baseline correction and stirring using 10 mm light path quartz glass cells. Quantum yields for CNPhdG were determined, as outlined previously in detail, using the comparative method, with quinine bisulfate (Φfl = 0.546 in 0.5 M H2SO4) serving as the fluorescence quantum yield standard.

Fluorescence of Modified TBA: All fluorescence spectra were recorded in 100 mM M⁺-phosphate, pH 7.0 with 100 mM MCl (M = Na⁺ or K⁺) buffer. In each case, both excitation and emission spectra were recorded for the 8-aryl-G modified TBA oligonucleotide. All oligonucleotide samples were prepared to a final concentration of 6 μM, and duplex samples were prepared using equivalent amounts (6 μM) of the 8-aryl-G modified TBA oligonucleotide and its complementary strand. All measurements were made using quartz cells (108.002F-QS) with a light path of 10 × 2 mm; excitation and emission slit-widths were kept constant at 5 nm. All fluorescence excitation spectra were recorded at the emission wavelength (maximum) of the 8-aryl−dG probe, from 200 to 10 nm below the emission wavelength, while fluorescence emission spectra were recorded at the excitation wavelength (maximum) of the probe, from 10 nm above the excitation wavelength to 600 nm. Spectra were recorded at 10 °C.

DFT calculations at the nucleoside level: The preferred conformations of the Fur dG and CNPh dG adducts were analyzed based on our previous studies of the C8-pyrrole-dG (Pyr dG) and para-phenoxyl-C8-dG (PhOH dG) adducts. Specifically, our previous studies analyzed the
preferred conformations of $^{\text{Pyr}}$dG and $^{p-\text{PhOH}}$dG using B3LYP/6-31G(d) potential energy surface (PES) scans with respect to rotation about θ (the dihedral angle controlling the relative orientation of the 8-moiety and the nucleobase ring) and χ (the dihedral angle controlling the relative orientation of the nucleobase and the 2'-deoxyribose moiety). Full optimizations were subsequently performed at the same level to characterize the identified minima and transition states on the PES, and scaled zero-point vibrational energy (ZPVE) corrected relative energies were obtained at the B3LYP/6-311+G(2df,p) level.

In the present work, all minima and transition states previously identified for the $^{\text{Pyr}}$dG and $^{p-\text{PhOH}}$dG adducts were used to generate the initial conformations of the $^{\text{Fur}}$dG and $^{\text{CNPh}}$dG probes. Specifically, the pyrrole ring of $^{\text{Pyr}}$dG was replaced with a furan ring to generate initial structures for $^{\text{Fur}}$dG, whereas the hydroxyl group of $^{p-\text{PhOH}}$dG was replaced with a cyano group to generate $^{\text{CNPh}}$dG. For both adducts considered in the present work, full optimizations and frequency calculations were performed on minima and transition states at the B3LYP/6-31G(d) level, while higher-level (B3LYP/6-311+G(2df,p)) single-point calculations were performed to obtain relative energies, which include scaled ZPVE corrections. Although syn minima and transition states were previously reported for $^{\text{Fur}}$dG, these structures are presented in this paper along with the anti minima and transition states to provide complete information about the PES of these adducts, which includes anti/syn energy differences and rotational barriers.

The global minima identified for $^{\text{CNPh}}$dG was used to calculate the B3LYP/6-31G(d) orbital energies and TD-B3LYP/6-31G(d) vertical excitation energies. Geometry optimization of the first excited singlet state of the $^{\text{CNPh}}$dG adduct was carried out with CIS/6-31G(d) using the ground state geometries as a starting point. Analogous excited state calculations for the $^{\text{Fur}}$dG
were reported in a previous study. These calculations were performed using Gaussian 09 (Revision A.02).

MD Simulations on TBA and Post-MD Analysis: The NMR-based structure of the non-modified 15-mer thrombin binding aptamer (PDB code: 148D, eighth frame) was used as a starting structure for MD simulations since a previous study identified this model as the best candidate. Structures of TBA containing modified (adducted) nucleosides at the G₅ or G₈ position were built by carrying out the appropriate 8 modification using Gaussview (Version 5.0). Initial structures were built with the syn-conformations of the adducted nucleosides at the G₅ position (since only the syn, not anti, conformation at G₅ stabilizes the G-quadruplex), whereas both the syn- and anti-conformations of the adducted nucleosides were analyzed at the G₈ position (since the G₈ position is in a loop and can therefore adopt both conformations about the glycosidic bond). Two possible orientations of the 8-moiety with respect to the nucleobase, which roughly correspond to $\theta \sim 0^\circ$ or 180°, were considered for the syn- and anti-conformations of eFur$_{d}$G. However, since the 8-moiety of $^{CNPh}_{d}$G is symmetrical, only one possible θ value ($\theta \sim 0^\circ$) was considered. For comparison, simulations were also carried out on natural (unmodified) TBA starting from the NMR structure.

The parmbsc0 modification to the parm99 force field was used for simulating the natural nucleosides (dA, dC, dG and dG), whereas GAFF parameters were used for the adducted nucleosides. Partial charges for the $^{Fur}_{d}$G and $^{CNPh}_{d}$G adducted nucleosides were calculated using the RED v.III.8 program interfaced with Gaussian 09. Simulations were carried out by immersing DNA in a 15 Å octahedral box of TIP4P water molecules using the TLEAP module of AMBER 11. Since previous studies have suggested that a single potassium ion bonds the 15-mer TBA, the folded TBA was stabilized by placing a potassium cation in
the geometrical center of the G-quadruplex stem. In synchrony with previous MD simulations in TBA, the ion coordinates were determined by averaging the Cartesian coordinates of the O6 atoms of the guanines forming the quadruplex stem (i.e., G₁, G₂, G₅, G₆, G₁₀, G₁₁ and G₁₅). The system was further neutralized by placing 13 sodium ions at random positions inside the water box. Minimization of solvent and ions was performed for 500 steps using the steepest descent algorithm followed by another 500 steps using the conjugate gradient minimization algorithm, with the DNA held fixed using a force constant of 500 kcal mol⁻¹ Å⁻². Subsequently, 2500 steps of minimization (1000 steps of steepest descent followed by 1500 steps of conjugate gradient) were performed on the entire system with constraints removed on DNA. The system was subsequently heated from 0 to 300 K with the DNA restrained using a force constant of 10 kcal mol⁻¹ Å⁻² for 20 ps under constant volume. Finally, a total of 20 ns of unrestrained MD simulations were carried out for each system at constant temperature (300 K) and pressure (1 atm) using AMBER 12. The bonds involving hydrogen atoms were constrained using SHAKE and a 2 fs time step was used throughout the simulation. The stability of the MD simulations was confirmed through analysis of root mean square derivations (RMSD) of the backbone residues over the course of the simulation (Figures S18–S27).

A free energy analysis was carried out using snapshots from the MD trajectories after removing the water and ions. The molecular mechanics energy (which is the sum of the energy terms stemming from deviations of the bond lengths, bond angles and dihedral angles from their equilibrium values, the van der Waals interaction potential and the electrostatic energy) and the solvation free energy (which is the sum of the electrostatic solvation energy and the nonpolar contribution to the solvation free energy) were calculated using the Poisson-Boltzmann method, whereas the entropy term was estimated from normal mode calculations using the MMPBSA²³.
method implemented in AMBER 11 and 12. The molecular mechanics and solvation free energy terms were calculated using 1000 snapshots (1 snapshot every 20 ps), while the entropy term was calculated using 100 snapshots (1 snapshot every 200 ps) from simulation trajectories.

For each modified TBA aptamer, the conformation with the lowest free energy was used for further analysis. Specifically, a representative structure was chosen by clustering the entire associated simulation based on the location of the atoms forming the θ and χ dihedral angles of the adducted nucleoside in the G$_5$ or G$_8$ position. For the unmodified TBA, a representative structure was chosen for further analysis by clustering the entire simulation based on the atoms comprising the χ dihedral angle in the guanine residues at the G$_5$ and G$_8$ positions. DFT calculations were carried out on the representative structures to estimate the hydrogen-bonding and stacking interactions between the adduct and neighboring bases using the Q-Chem software.24 The oB97X-D/aug-cc-pVTZ level was used for this analysis since this method has been shown to provide reasonable estimates of both hydrogen bonding and stacking energies.25 The default SCF convergence threshold of 10^{-5} was used along with the 10^{-10} cutoff for neglecting two-electron integrals (using the THRESH keyword). For these calculations, the sugar-phosphate backbone was removed and the dangling bonds were saturated with hydrogen atoms, where the hydrogen atom orientation corresponds to the heavy atom position and the C–N bond distance is replaced by a typical C–H bond distance according to Gaussview.
REFERENCES

Figure S1. B3LYP/6-31G(d) Twist Angle (θ, deg.) for Minima and Transition States of Fur^+dG (ZPVE Corrected B3LYP/6-311+G(2df,p) Relative Energies from Single-Point Calculations Provided in Parenthesis, kJ mol$^{-1}$).
Figure S2. B3LYP/6-31G(d) Twist Angle (θ, deg.) for Minima and Transition States of CNPbdG (ZPVE Corrected B3LYP/6-311+G(2df,p) Relative Energies from Single-Point Calculations Provided in Parenthesis, kJ mol$^{-1}$).
Figure S3. Circular Dichroism spectra of 6 uM modified TBA duplexes with modifications at G$_5$, G$_6$ and G$_8$. Modified TBA = (5'-GGTTG$_5$G$_6$TG$_8$TGGTTGG) complimentary strand = (5'-CCAACCACACCAACC). Fur$_d$G (Red) and CNP$_d$G (Blue) modifications at G$_5$ (solid traces), G$_6$ (dotted traces) and G$_8$ (dashed traces).
Figure S4. 1H NMR of CNPhdG in DMSO-d_6.

Figure S5. 13C NMR of CNPhdG in DMSO-d_6.
Figure S6. 1H NMR of 1 in DMSO-d_6.

Figure S7. 13C NMR of 1 in DMSO-d_6.

S19
Figure S8. 1H NMR of 2 in DMSO-d_6.

Figure S9. 13C NMR of 2 in DMSO-d_6.
Figure S10. 1H NMR of 3 in CDCl$_3$.

Figure S11. 13C NMR of 3 in CDCl$_3$.
Figure S12. 31P NMR of 3 in CDCl$_3$.

Table S1. ESI-MS Analysis of 8-Aryl-G Modified TBA Oligonucleotides

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Product Formula</th>
<th>calcld massa</th>
<th>exptl m/z (ESI)b</th>
<th>exptl mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA (X = CNPhG)</td>
<td>C${157}$H${190}$N${58}$O${94}$P$_{14}$</td>
<td>4824.81</td>
<td>[M – 7H]$^{7-}$ = 688.7</td>
<td>4824.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 8H]$^{8-}$ = 602.1</td>
<td>4824.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 9H]$^{9-}$ = 535.5</td>
<td>4824.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 10H]$^{10-}$ = 481.5</td>
<td>4825.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 7H]$^{7-}$ = 683.3</td>
<td>4790.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 8H]$^{8-}$ = 597.7</td>
<td>4789.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 9H]$^{9-}$ = 531.3</td>
<td>4790.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 10H]$^{10-}$ = 478.0</td>
<td>4790.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 6H]$^{6-}$ = 814.1</td>
<td>4890.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 7H]$^{7-}$ = 697.8</td>
<td>4891.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 8H]$^{8-}$ = 610.4</td>
<td>4891.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[M – 9H]$^{9-}$ = 542.5</td>
<td>4891.5</td>
</tr>
<tr>
<td>TBA (X = FurG)</td>
<td>C${154}$H${189}$N${57}$O${95}$P$_{14}$</td>
<td>4789.90</td>
<td>[M – 7H]$^{7-}$ = 689.7</td>
<td>4824.4</td>
</tr>
<tr>
<td>TBA (X = FurG, CNPhG)</td>
<td>C${161}$H${192}$N${58}$O${95}$P$_{14}$</td>
<td>4890.83</td>
<td>[M – 7H]$^{7-}$ = 691.7</td>
<td>4891.6</td>
</tr>
</tbody>
</table>

a Monoisotopic mass of most abundant isotopologue; assumes one 13C isotope. b Measured m/z from mass spectrum.
Figure S13. ESI-MS spectrum of TBA (X = $^{\text{Fur}}$dG at G$_5$).

Figure S14. ESI-MS spectrum of TBA (X = $^{\text{CNPh}}$dG at G$_5$).
Figure S15. ESI-MS spectrum of TBA ($X = \text{Fur}dG$ at G$_5$, $\text{CNPh}dG$ at G$_8$).

S16. Mol2 file of the $\text{CNPh}dG$ nucleoside adduct.

```mol2
@<TRIPOS>MOLECULE
LIG
  44  47  1  0  0
SMALL
No Charge or Current Charge
@<TRIPOS>ATOM
  1 P  4.6450 0.0580 -1.3020 P  1 LIG  1.166100
  2 O  4.1900 1.0240 0.0000 OS  1 LIG -0.498000
  3 O1  4.5440 0.8590 -2.5640 O2  1 LIG -0.768000
  4 O2  5.8540 -0.6970 -0.8410 O2  1 LIG -0.768000
  5 O3  0.0000 0.0000 0.0000 OS  1 LIG -0.541400
  6 C5*  3.1300 1.9330 -0.2340 CI  1 LIG -0.025000
  7 H5*1  3.4200 2.7280 -0.9400 H1  1 LIG  0.086400
  8 H5*2  2.8980 2.4100 0.7260 H1  1 LIG  0.086400
  9 C4*  1.8670 1.2590 -0.7730 CT  1 LIG  0.155400
 10 H4*  1.0400 1.9790 -0.7790 H1  1 LIG  0.108600
 11 O4*  2.1100 0.8310 -2.1350 OS  1 LIG -0.411200
 12 C1*  1.8770 -0.5650 -2.2640 CT  1 LIG  0.189500
 13 H1*  0.8700 -0.7500 -2.6430 H2  1 LIG  0.074500
```
S17. Mol2 file of the \textit{Fur}dG nucleoside adduct.

@<TRIPOSO>MOLECULE

LIG

40 43 1 0 0

SMALL

No Charge or Current Charge

@<TRIPOSO>ATOM

<p>| 1 P | 4.6680 | 0.0340 | -1.1840 P | 1 LIG | 1.166200 |
| 2 O | 4.1610 | 1.1180 | 0.0000 OS | 1 LIG | -0.490300 |
| 3 O1| 4.5670 | 0.6930 | -2.5260 O2| 1 LIG | -0.768000 |
| 4 O2| 5.8900 | -0.6300 | -0.6270 O2| 1 LIG | -0.768000 |
| 5 O3| 0.0000 | 0.0000 | 0.0000 OS| 1 LIG | -0.549700 |
| 6 C5*| 3.0790 | 1.9630 | -0.3460 CI| 1 LIG | -0.007000 |
| 7 H5*1| 3.3670 | 2.7080 | -1.1050 H1| 1 LIG | 0.080300 |</p>
<table>
<thead>
<tr>
<th>Item</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Atom</th>
<th>Bond</th>
<th>Ligand</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2.7870</td>
<td>2.5080</td>
<td>0.5600</td>
<td>H1</td>
<td>1 LIG</td>
<td>0.080300</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.8710</td>
<td>1.1920</td>
<td>-0.8760</td>
<td>CT</td>
<td>1 LIG</td>
<td>0.134700</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.0190</td>
<td>1.8740</td>
<td>-2.1720</td>
<td>OS</td>
<td>1 LIG</td>
<td>-0.394800</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.9390</td>
<td>-0.7490</td>
<td>-2.2040</td>
<td>CT</td>
<td>1 LIG</td>
<td>0.104700</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.8230</td>
<td>0.0850</td>
<td>1.0200</td>
<td>H1</td>
<td>1 LIG</td>
<td>0.056600</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.0060</td>
<td>-1.2120</td>
<td>-0.7420</td>
<td>CT</td>
<td>1 LIG</td>
<td>0.065800</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.0450</td>
<td>-1.3780</td>
<td>-0.4440</td>
<td>HC</td>
<td>1 LIG</td>
<td>0.042400</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.4360</td>
<td>-2.1300</td>
<td>-0.5710</td>
<td>HC</td>
<td>1 LIG</td>
<td>0.042400</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2.9060</td>
<td>-1.3870</td>
<td>-3.0990</td>
<td>N*</td>
<td>1 LIG</td>
<td>-0.005900</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.3800</td>
<td>-2.6130</td>
<td>-4.7270</td>
<td>C*</td>
<td>1 LIG</td>
<td>0.138700</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.0320</td>
<td>-3.1460</td>
<td>-5.9390</td>
<td>C*</td>
<td>1 LIG</td>
<td>-0.153100</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.7010</td>
<td>-3.2860</td>
<td>-6.7750</td>
<td>HA</td>
<td>1 LIG</td>
<td>0.172700</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.2850</td>
<td>-2.5900</td>
<td>-3.8980</td>
<td>OS</td>
<td>1 LIG</td>
<td>-0.117100</td>
<td></td>
</tr>
</tbody>
</table>
Figure S18. Radar Plots for the Percent Distribution of the χ (a and c, deg.) and θ (b and d, deg.) Dihedral Angles Throughout the 20 ns MD Trajectories Corresponding to the Energetically Most Stable Conformations of the $^{\text{CNPh}}$dG (blue) and $^{\text{Fur}}$dG (red). Adducts at the (a and b) G$_5$ or (c and d) G$_8$ Position of the Modified Thrombin Binding Aptamer.
Table S2. Occupancies for the Hydrogen Bonds Between the G₅-Adduct and the Paired Bases in G-quartet over the Duration of the MD Simulations.ᵃ

<table>
<thead>
<tr>
<th>G5 position</th>
<th>bond</th>
<th>% occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>N2-H(G5)...N7(G2)</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>N1-H(G5)...O6(G2)</td>
<td>99.1</td>
</tr>
<tr>
<td></td>
<td>N2-H(G11)...N7(G5)</td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td>N1-H(G11)...O6(G5)</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>N2-H(F₅G5)...N7(G2)</td>
<td>99.4</td>
</tr>
<tr>
<td></td>
<td>N1-H(F₅G5)...O6(G2)</td>
<td>99.2</td>
</tr>
<tr>
<td></td>
<td>N2-H(G11)...N7(F₅G5)</td>
<td>97.1</td>
</tr>
<tr>
<td></td>
<td>N1-H(G11)...O6(F₅G5)</td>
<td>98.8</td>
</tr>
<tr>
<td></td>
<td>N2-H(C₅P₅G5)...N7(G2)</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td>N1-H(C₅P₅G5)...O6(G2)</td>
<td>99.1</td>
</tr>
<tr>
<td></td>
<td>N2-</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>H(G11)...N7(C₅P₅G5)</td>
<td>99.5</td>
</tr>
<tr>
<td></td>
<td>N1-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H(G11)...O6(C₅P₅G5)</td>
<td></td>
</tr>
</tbody>
</table>

ᵃH-bond distance cut-off implemented was a 3.40 Å heavy atom separation and a 120° X-H-X angle. Only H-bonds with occupancy greater than 10% are reported.

Figure S19. Backbone RMSD from MD Simulations on Thrombin Binding Aptamer with the Fur dG adduct Placed at the G5 position in syn Orientation and Initial θ=0°.
Figure S20. Backbone RMSD from MD Simulations on Thrombin Binding Aptamer with the Fur-dG Adduct Placed at the G5 position in *syn* Orientation and Initial $\theta \sim 180^\circ$.
Figure S21. Backbone RMSD from MD Simulations on Thrombin Binding Aptamer with the Fur dG Adduct Placed at the G8 position in \textit{anti} Orientation and Initial $\theta \approx 0^\circ$.

Figure S22. Backbone RMSD from MD Simulations on Thrombin Binding Aptamer with the Fur dG Adduct Placed at the G8 position in \textit{anti} Orientation and Initial $\theta \approx 180^\circ$.
Figure S23. Backbone RMSD from MD Simulations on Thrombin Binding Aptamer with the Fur-dG Adduct Placed at the G8 position in *syn* Orientation and Initial θ-0°.

Figure S24. Backbone RMSD from MD Simulations on Thrombin Binding Aptamer with the Fur-dG Adduct Placed at the G8 position in *syn* Orientation and Initial θ-180°.
Figure S25. Backbone RMSD from MD Simulations on Thrombin Binding Aptamer with the CNPh dG Adduct Placed at the G5 position in syn Orientation.

Figure S26. Backbone RMSD from MD Simulations on Thrombin Binding Aptamer with the CNPh dG Adduct Placed at the G8 position in anti Orientation.
Figure S27. Backbone RMSD from MD Simulations on Thrombin Binding Aptamer with the CNPh.dG Adduct Placed at the G8 position in syn Orientation.

Figure S28. Backbone RMSD from MD Simulations on the Natural (non-modified) Thrombin Binding Aptamer.