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4.2 Magneto-optical Kerr Effect (MOKE) 

Magneto-optical effects originate from magnetic perturbations of the dielectric permittivity tensor, 
where MOKE describes a change in the polarization of the reflected light, being linear proportional to 
the magnetization of the reflecting surface. MOKE has been extensively studied in orthoferrite 
materials2. Based on those studies a laser light source with the photon energy 3.0 eV was used, which 
activates the charge-transfer transition t2u

n()--> t2g* in Fe3+ ions in octahedral crystal field of O2- 
ligands, thus producing one of the strongest maxima in the magneto-optic spectrum. 

 

The longitudinal geometry (magnetic field applied parallel to both the film surface and to the plane 
of incidence) is primarily used to measure the magnetization components along the magnetic field, 
that is, in the film plane. However, the same geometry is also sensitive to the out-of-plane 
magnetization component if it does exist, as shown by numerical analysis of a similar MOKE setup.3 
The corresponding Kerr-rotation   a1mx-a2mz, where a1 and a2 are parameters depending on material 
constants and angle of incidence. mx and mz denote the in-plane magnetization component along the 
applied field and the out-of-plane magnetization component, respectively.  

Because of the anisotropic orbital angular momentum quenching2 the corresponding off-diagonal 

elements of the dielectric permittivity tensor, ij,  are proportional not only to the uncompensated 
magnetization, m, as usual, but also to the transverse antiferromagnetic (AF) vector l,4 

ac=-ca=i(1mb+1la)           (S1) 

bc=-cb=i(2ma+2lb)           (S2) 

where 1,2, 1 and 2  are coefficients, and m and l are uncompensated magnetization and AF  vector 
projections along the corresponding orthorhombic unit cell axis. Note that since the weak 
ferromagnetic (WFM) magnetization m is generated by AF spin canting, increasing the absolute value 
of m in the applied magnetic field would correspond to decreasing the AF vector projection l 
perpendicular to the field, and vice versa. 
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Figure S11: Three-dimensional drawings of orthorhombic unit cells corresponding to the polar and 
non-polar phases in (YFeO3)5/(LaFeO3)5 and their orientations with respect to orthorhombic (Pnma) 

or pseudo-cubic (pc) crystal axis of (101)Pnma substrate. 
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The expected MOKE responses depending on the magnetic structure (2 or 4): 

 

Non-polar phase (grown with the long axis b along [010] direction of the DSO (101) substrate):  

If the magnetic field is applied along [010]=[100]pc of the DSO substrate, in orthorhombic and 
pseudo-cubic notation, respectively: the MOKE signal should contain WFM hysteresis if the  4 
magnetic structure where the WFM moment lies along the b axis is adopted (compare Fig. 10a and 
10b). When the magnetic field is along [110]pc of the DSO substrate, then the WFM moment is 
oriented at an angle of 45 degrees to the magnetic field, that is, a hysteresis is possible, since the field 
projection along the easy WFM axis [010]Pnma is still about 70% of the applied field (compare Fig. 10a 
and 10b, for magnetic data on single crystal of YFeO3

5. If the magnetic field is applied along [010]pc 
of the DSO substrate, then the WFM moment is perpendicular to the field, and no hysteresis is 
expected. Since the transverse AF vector component would be zero, too, no contribution to the MOKE 
signal would be expected according to Eq. (S1) (compare Fig. 10a and 10b). Analog, under 
assumption of the 2 magnetic structure one would expect a WFM hysteresis loop if the field is 
applied along [010]pc and no loop if the field is along [100]pc. This is the opposite to the observed 
results (Fig. 10a).  Based on the results shown in Fig. 10a, the magnetic configuration for the non-
polar phase is 4. 

 

B: Polar phase (with the long axis b growing along [101] of the substrate):  

If the magnetic configuration is 4, then under all in-plane orientations of the magnetic field, the 
WFM moment should be oriented perpendicular to the field (out-of-plane), therefore no WFM 
hysteresis is expected. If the magnetic configuration of the polar phase is the alternative one, that is 

2, the WFM magnetization should be in-plane and emerge in form of a WFM hysteresis loop in case 
the field is applied along or at least at an angle of 45 degrees to the easy axis a (=along [110]pc of the 
substrate, see Fig. S11 and the table below. Since no WFM hysteresis loop is observed in the latter 

case (Fig. 10a), when the field is applied along [010]pc, the configuration 2 is improbable. In the case 

of the 4 configuration the hard axis (out-of-plane) magnetization as well as the corresponding 
transverse AF vector could still contribute to the total MOKE signal, however with the opposite sign 
if compared to the in-plane contribution. This explains the negative slope of the hysteresis loops 
shown for [(YFeO3)5/(LaFeO3)5]40 and LaFeO3 thin films grown on DSO presented in Fig. 10. The 
degree of the negative slope is likely to be proportional to the number of structural domains grown 
with the b-axis out-of-plane (=polar phase in the case of (YFeO3)5/(LaFeO3)5 , see Fig. 10d). The 
experimental results shown in Fig. 10a are in agreement with the polar phase adopting magnetic 

configuration 4. (YFeO3)5/(LaFeO3)5 heterostructures demonstrated (Fig. 10a) sharp hysteresis loops, 
similar to those observed on LaFeO3 thin films (Fig. 10c). In comparison to those cases the YFeO3 
films showed similar magnetic anisotropy (Fig. 10b) but elongated hysteresis loops, which could be 
explained by the higher number of structural defects in those films due to the higher amount of the 
growth strain (-3.3%), that is, higher mismatch to DyScO3 substrate, if compared to LaFeO3 
(mismatch -0.3%)and (YFeO3)5/(LaFeO3)5 (mismatch +0.1% and -0.2% for non-polar and polar 
phases, respectively). 

Both systems, YFeO3 and LaFeO3 films on DyScO3 and (YFeO3)5/(LaFeO3)5 on SrTiO3 showed 
similar coercive fields of about 1kOe, in agreement with the literature values5 for in-plane 
magnetization in YFO films on STO substrates. In comparison to those, broader loops in the case of 
YFO-LFO films grown on DSO substrates with coercivity fields of about 5kOe could be related to the 
interfacial distortion in the polar phase. 
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6. Electrical characterisation 

The in-plane conductivity of the film was measured in a two probe configuration at room temperature 
using a electrometer (Keithley model 6430). The contacts were made using gold wires and indium 
solder. The conductivity was found to be 4.10-7 S/cm, the sample is therefore considered insulating at 
room temperature, a requirement to perform dielectric measurement. 
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7. PFM details 

The piezoelectric properties of the samples were characterized using a modified piezoelectric force 
microscopy (PFM) technique. PFM is based on the standard contact mode atomic force microscopy 
(AFM) setup with the cantilever and tip being electrically conductive6. For piezoelectric samples a 
voltage applied between the tip and a bottom or surface electrode results in sample strains due to the 
inverse piezoelectric effect7. The sample strains cause vertical and lateral deflection of the cantilever 
which can be accurately measured using appropriate calibration methods. In order to separate the 
topography and piezoresponse signals and also to increase the signal to noise ratio a lock-in amplifier 
technique is used, with the voltage applied to the tip having a much larger frequency compared to the 
scanning frequency. 

The profiles were measured with the cantilever parallel to the electrodes (Fig.S13) using lock-in 
amplifiers at 10 kHz with amplitude of 1 V. Various voltage offsets were used as indicated in Figure 5 
d. The measurement frequency was chosen away from any cantilever resonance. The strain in the thin 
film underneath the electrodes is driven by the active regions between electrodes, resulting in a 
spatially alternating stretching/compression about their centre. At the same time, the thin film is 
displaced vertically, again alternating in sign between adjacent electrodes. By changing the voltage 
offset used, both the displacement amplitudes and signs can be changed. This is due to the electric 
field dependence of the piezoelectric coefficients7. As we have verified in Figure S13 (c) the 
displacement amplitudes change linearly with voltage offset, showing a non-hysteretic behaviour with 
coercive voltage of 2 V. 
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agreement between the simulations and the experimental data can be achieved  by varying the ratio 
/Y.12  Within the order of magnitude, a good match between experiment and simulation is obtained 
for /Y = 10-12 (m2/N) and electric polarization perpendicular to the electrodes. This corresponds to the 
[-101] direction in the Pnma subcell coordinate system. 
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