Supporting Information

Natalamycin A, an Ansamycin from a Termite-Associated Streptomyces sp.

Ki Hyun Kim,^{‡,a,c} Timothy R. Ramadhar,^{‡,a} Christine Beemelmanns,^{‡,a,d} Shugeng Cao,^{a,e} Michael Poulsen,^{b,f} Cameron R. Currie,^b Jon Clardy^{*,a}

[‡] Equal authorship

 ^a Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115, United States of America
 ^b Department of Bacteriology, University of Wisconsin-Madison, 6145 Microbial Science Building, 1550 Linden Drive, Madison, Wisconsin, 53706, United States of America

Current Addresses

 ^c Natural Product Research Laboratory, School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea
 ^d Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans Knöll Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
 ^e Natural Products & Experimental Therapeutics, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii, 96813, United States of America
 ^f Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark

jon_clardy@hms.harvard.edu

Table of Contents

General Experimental Procedures	S2
Isolation of <i>Streptomyces</i> spp	S3
Isolation of <i>Pseudoxylaria</i> sp. X802 and <i>Termitomyces</i> sp. T112 fungi	S3
Streptomyces sp. M56 16S rRNA Sequence.	S4
Screening of <i>Streptomyces</i> sp. M56 against Fungi	
Metabolomic Profile Time Course Studies of <i>Streptomyces</i> sp. M56	
Preparative-Scale Purification of Ansamycins.	
Spectroscopic Data for New Compounds	
Single Crystal X-ray Diffraction Experimental Procedure	S19
Computational Methods	
Computational Data	
References	S33

General Experimental Procedures

Optical rotations were obtained using a Perkin-Elmer 241 polarimeter, IR spectra were measured on a Bruker Alpha-P FT-IR spectrometer, and UV spectra were acquired on an Amersham Biosciences Ultrospec 5300 Pro Spectrophotometer. All NMR experiments were carried out on a Varian INOVA 600 MHz NMR spectrometer equipped with an indirect detection probe. HPLC purifications were carried out on an Agilent 1100 or 1200 Series HPLC system (Agilent Technologies) equipped with a photo diode array detector. LC-MS analysis was performed on an Agilent 1200 Series HPLC system equipped with a diode array detector and a 6130 Series ESI mass spectrometer using an analytical Phenomenex Luna C18 column (5 μ m, 4.6 × 100 mm). High resolution mass spectrometery (HR-MS) analysis was performed on a Waters Micromass Q-ToF Ultima ESI-TOF mass spectrometer at the University of Illinois Urbana-Champaign School of Chemical Sciences Mass Spectrometry Laboratory. The following growth media, prepared from BD DifcoTM dehydrated culture media, for bacteria and fungi were used throughout the course of this study:

Broth (per 1 L)

ISP-2: 0.4% yeast extract, 1.0% malt extract, 0.4% glucose, pH 7.3
LB-Miller: 1.0% tryptone, 5.0% yeast extract, 1.0% NaCl, pH 7.0
PD: 0.4% potato starch infusion, 2.0% dextrose, pH 5.1
YM: 0.5% peptic digest of animal tissue, 0.3% yeast extract, 0.3% malt extract, pH 6.2
YP: 1.0% yeast, 2.0% peptone, 1.0% glucose, pH 7.0

Agar (per 1 L)

ISP-2: 0.4% yeast extract, 1.0% malt extract, 0.4% glucose, 1.5% agar, pH 7.2 LB-Miller: 1.0% tryptone, 5.0% yeast extract, 1.0% NaCl, 1.5% agar, pH 7.0 Low nutrient media¹: chitin (4 g), K₂HPO₄ (0.7 g), KH₂PO₄ (0.3 g), MgSO₄·5H₂O (0.5 g), FeSO₄·7H₂O (0.01 g), ZnSO₄ (0.001 g), MnCl₂ (0.001 g), agar (20 g), pH 8 PD: 0.4% potato starch infusion, 2.0% dextrose, 1.5% agar, pH 5.6 YM: 0.5% peptic digest of animal tissue, 0.3% yeast extract, 0.3% malt extract, 1.0% dextrose, 2.0% agar, pH 6.2

Isolation of *Streptomyces* spp.

Fungal comb material was collected from a *Macrotermes natalensis* Mn802 nest in South Africa, placed into clean plastic bags, stored at 5 °C, and processed within 1 day from collection. All samples, which were processed separately, were thoroughly fragmented and mixed in 700 μ L of ddH₂O. Bacteria were isolated by plating 350 μ L of these suspensions on low nutrient media. Isolates with Actinobacteria-like morphology were transferred to YM agar and sub-cultured until pure isolates were obtained. This resulted in a total of 360 Actinobacteria isolates, including *Streptomyces* sp. M56.

Streptomyces sp. M56 was identified and prioritized for analysis on the basis of its antifungal activity (*vide infra*). A region of the 16S rDNA gene was amplified for phylogenetic analysis with general primers [8F and 1540R or 27F and 1492R] using standard DNA extraction and PCR protocols. A nucleotide BLAST search of the partial 16S rRNA sequence for *Streptomyces* sp. M56 revealed that it had a 100% identity match with the partial 16S rRNA sequence for *Streptomyces malaysiensis* strain 1160 GenBank accession number HQ607429.1.

Liquid cultures of *Streptomyces* sp. M56 were prepared by excising YM agar slices (approx. $2 \text{ cm} \times 1 \text{ cm}$) covered with bacterial growth from a plate culture less than 14 d old and adding them to 50 mL ISP-2 liquid medium. The inoculated broth was then incubated at 30 °C while shaken at 250 rpm. Turbidity was reached within 4 days.

Isolation of Pseudoxylaria sp. X802 and Termitomyces sp. T112 fungi

Pseudoxylaria sp. X802 was isolated from hyphal cords or stroma appearing on fungal comb material (approx. 15 g) that had been incubated for 7–14 days in the absence of termites in sealed styrofoam cups with tissue paper soaked in ddH₂O to maintain humidity. Material from fresh fruiting structures of *Pseudoxylaria* sp. X802 was placed directly onto YM agar plates for further propagation. *Termitomyces* sp. T112 was obtained by placing nodules from fresh fungal comb material directly onto YMA plates. Both fungi were subcultured on YM agar plates until pure isolates were obtained. All incubations were performed in the dark at 25 °C.

Liquid fungal cultures were prepared by excising YM agar slices (approx. $2 \text{ cm} \times 1 \text{ cm}$) covered with fungal growth from a plate culture 14–21 d old and adding them to 50 mL PD liquid medium. This was incubated at 30 °C and shaken at 250 rpm for approximately 14–21 d to obtain sufficient biomass.

Streptomyces sp. M56 16S rRNA Sequence

5'–3' direction

"CGGCCGGGGATTAGTGGCGAACGGGTGAGTAACACGTGGGCAATCTGCCCTGCACTCTG GGACAAGCCCTGGAAACGGGGTCTAATACCGGATACGACGCGTTCCCGCATGGGATACGT GTGGAAAGCTCCGGCGGTGCAGGATGAGCCCGCGGCCTATCAGCTTGTTGGTGGGGTGAT GGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGGCGACCGGCCACACTGGGACT GAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCA AGCCTGATGCAGCGACGCCGCGTGAGGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAG CAGGGAAGAAGCGTGAGTGACGGTACCTGCAGAAGAAGCGCCGGCTAACTACGTGCCAG CAGCCGCGGTAATACGTAGGGCGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGAGCTCG TAGGCGGCTTGTCGCGTCGGATGTGAAAGCCCGGGGCTTAACTCCGGGTCTGCATTCGAT ACGGGCAGGCTAGAGTTCGGTAGGGGGGGAGATCGGAATTCCTGGTGTAGCGGTGAAATGCGC AGATATCAGGAGGAACACCGGTGGCGAAGGCGGATCTCTGGGCCGATACTGACGCTGAG GAGCGAAAGCGTGGGGGGGGGGACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGTT GGGAACTAGGTGTGGGGCGACATTCCACGTTGTCCGTGCCGCAGCTAACGCATTAAGTTCC CCGCCTGGGGGGGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACA AGCGGCGGAGCATGTGGCTTAATTCGACGCAACGCGAAGAACCTTACCAAGGCTTGACAT ACACCGGAAACATCCAGAGATGGGTGCCCCCTTGTGGTCGGTGTACAGGTGGTGCATGGC TGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCC TGTGTTGCCAGCGGGTTATGCCGGGGGACTCACAGGAGACTGCCGGGGTCAACTCGGAGGA AGGTGGGGACGACGTCAAGTCATCATGCCCCTTATGTCTTGGGCTGCACACGTGCTACAAT GGCCGGTACAATGAGCTGCGAAGCCGTGAGGTGGAGCGAATCTCAAAAAGCCGGTCTCA GTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTCGGAGTCGCTAGTAATCGCAGATC AGCATTGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCACGAAA GTCGGTAACACCCGAAGCCGG"

GenBank accession number: KJ511242

Screening of Streptomyces sp. M56 against Fungi

For antifungal screening, 20 μ L of a turbid bacterial/spore solution of *Streptomyces* sp. M56 grown in ISP-2 broth was placed in the center of a PD agar plate. The plates were incubated for 7 d at 30 °C, in which time dense bacterial growth with a radius of approx. 0.3–0.5 cm was observed. Two methods for subsequent inoculation with fungi were used:

Method A: Plates were inoculated with 100 μ L of a turbid mycelia/spore suspension of the respective fungi in PD broth. The fungal suspension was carefully spread on the plate with a sterile cotton swab without touching *Streptomyces* sp. M56.

Method B: Agar slices with fungal growth were excised and placed at the edge of the assay plate.

All assay plates were incubated at ambient temperature in the dark. The effects of Actinobacteria inhibition on fungal growth were evaluated 3, 5, 7, 10, 14, and 21 days after fungal inoculation. Measurements were done using the edge of the bacterial growth as the point of reference. The measured zone of inhibition (ZOI) is equivalent to the average distance between the bacteria and the region of normal fungal growth. As a control, a mycelia/spore suspension of the respective fungus was spread onto a sterile PD agar plate and monitored over time to check its viability.

Fungus

Alternaria alternate

Method and time
ZOI (triplicate)

Method B, 7 d

Method B, 14 d 14 mm Cladosporium perangustum

Method B, 7 d

16 mm

Method and time

Method A, 14 d

15 mm

ZOI (triplicate)

Pleosporales sp. LH222

Method A, 21 d

14 mm

Method B, 7 d

12 mm

Pseudoxylaria sp. X802

ZOI (triplicate)

Method and time

Method and time ZOI (triplicate) Method B, 21 d 17 mm (full inhibition)

Termitomyces

sp. T112

Method B, 21 d

16 mm (full inhibition)

Method and time

ZOI (triplicate)

Trichoderma sp. ATT151

Method and time

ZOI (triplicate)

7 mm

Method A, 14 d

Umbelopsis isabellina

Method and time ZOI (triplicate)

Method A, 7 d 4 mm

Method B, 7 d 5 mm

Metabolomic Profile Time Course Studies of Streptomyces sp. M56

For metabolomic profiling, 14 ISP-2 agar plates were each inoculated with a 50 μ L aliquot of a turbid bacterial/spore suspension of *Streptomyces* sp. M56 in ISP-2 broth. The suspension was evenly distributed over the agar surface, and the plates were incubated at 30 °C in the dark. For each time point (3, 5, 7, 9, 10, 12, and 14 days after inoculation) two agar plates were cut into squares, consolidated, and soaked in *i*PrOH overnight. The solvent was filtered, removed under reduced pressure, and the crude extract was dissolved in a 50% MeOH/H₂O solution (1 mL). Of this mixture, a 100 μ L aliquot was used for reverse-phase LC-MS analysis, which was performed using an analytical Phenomenex Luna C18 column (5 μ m, 4.6 × 100 mm) (flow rate: 0.7 mL/min, program (30 min total): 0-20 min linear gradient 10% MeCN/H₂O (+ 0.1% formic acid (FA)) to 100% MeCN + 0.1% FA, then 3 min 100% MeCN + 0.1% FA isocratic elution, then 1 min ramp down to and 6 min isocratic elution with 10% MeCN/H₂O (+ 0.1% FA) (Figure S1 and S2)).

To compare growth on solid media with liquid fermentation, 25 mL ISP-2 liquid broth was inoculated with 50 μ L of a turbid bacterial/spore solution in ISP-2 broth and incubated for 10 d at 30 °C with shaking at 250 rpm. The culture was extracted using EtOAc (75 mL) and the solvent was removed under reduced pressure. The resulting crude extract was dissolved in a 50% MeOH/H₂O solution (1 mL) and a 100 μ L aliquot was used for LC-MS studies (Figure S3).

Figure S1. LC-MS diagram (254 nm) of metabolite extracts from *Streptomyces* sp. M56 grown on ISP-2 agar plates after 3 d (pink), 5 d (green), 7 d (red) and 9 d (blue)

Figure S2. LC-MS diagram (254 nm) of metabolite extracts from *Streptomyces* sp. M56 grown on ISP-2 agar plates after 9 d (blue), 10 d (red), 12 d (green) and 14 d (pink)

Figure S3. LC-MS trace (254 nm) of M56 metabolite extracts from an ISP-2 liquid culture after 10 d (red) and from ISP-2 agar plates after 9 d (blue)

Preparative-Scale Purification of Ansamycins

Streptomyces sp. M56 was grown on 50 ISP-2 agar plates (14 cm diameter) for 10 days at 30 °C. The agar was then cut into squares, consolidated, and soaked overnight in *i*PrOH. The *i*PrOH phase was filtered, the solvent was removed under reduced pressure, and the crude extract dissolved in a 5:1 MeOH:H₂O mixture (200 mL). The extract was loaded onto an activated pre-packed C_{18} Sep-Pak cartridge (10 g, Waters) which was equilibrated with 20% MeOH/H₂O. The charged column was then washed with two column volumes of 20% MeOH/H₂O to remove very polar compounds followed by step gradient elution with two column volumes of each of the following solvent mixtures: 40% MeOH/H₂O, 60% MeOH/H₂O, 80% MeOH/H₂O, 100% MeOH, and 100% acetone.

Each fraction was tested for antifungal and antimicrobial activity in triplicate against standardized bacterial and yeast strains from the American Type Culture Collection (*B. subtilis* (ATCC 6633), *E. coli* (ATCC 25922) and *S. cerevisiae* (ATCC 9763)) and co-isolated fungi *Pseudoxylaria* sp. X802 and *Termitomyces* sp. T112. MIC (minimum inhibitory concentration) and MFC (minimum fungicidal concentration) values for *B. subtilis, E. coli*, and *S. cerevisiae* were determined using broth-dilution techniques.² *B. subtilis,* and *E. coli* were grown in LB-Miller broth (5 mL), and *S. cerevisiae* was grown in YP broth (5 mL) at 30 °C overnight to an OD_{600nm} > 0.9. The cultures were diluted 1:100 with LB-Miller broth to an approximate OD_{600nm} of 0.05, and 100 µL aliquots of diluted culture were added to a series of wells in a 96-well plate. A 0.1 mg/100 µL DMSO stock solution of the crude material from each fraction was used for testing (titration from 1 µL up to 12 µL of substrate solution, in 1 µL steps), and streptomycin sulfate and amphotericin B were used as positive controls. After incubation at 30 °C for 12 h the OD_{600nm} was measured using a SpectraMax M5 Multi-Mode Microplate Reader. Cultures in wells showing no growth were plated on agar plates (LB for *E. coli* and *B. subtilis* assays, and YP for *S. cerevisiae* assays) and incubated at 30 °C overnight to verify loss of viability. MIC₅₀ values were calculated using XLfit 4.2 software.³

For antifungal assays against *Pseudoxylaria* sp. X802 and *Termitomyces* sp. T112, PD agar plates were inoculated with 100 μ L of a turbid mycelia/spore suspension in PD broth, and the surface was allowed to dry using the laminar air flow of the biosafety cabinet. Sterile paper discs soaked with a DMSO solution (0.1 mg/100 μ L) of the crude material from each fraction were placed onto the inoculated plates. All plates were stored at room temperature and were monitored for 21 d.

Fractions eluted with 80% and 100% MeOH exhibited a clear zone of inhibition in disc diffusion assays against *Pseudoxylaria* sp. X802 and *Termitomyces* sp. T112 (ZOI 0.5–1.0 cm), a MIC of $35 \pm 5 \mu$ g/mL for *B. subtilis*, and an MFC of $45 \pm 5 \mu$ g/mL for *S. cerevisiae*. These fractions were subsequently analyzed by LC-MS, which indicated a complex mixture of secondary metabolites.

Fractions eluted with 80% and 100% MeOH were consolidated and subsequently purified by preparative reverse-phase HPLC (Agilent 1100 Series HPLC system, C_{18} column, Phenomenex Luna, 250×21.2 mm, 5 µm) with a flow rate of 10 mL/min using a linear gradient from 30% MeOH/H₂O to 100% MeOH for 30 min, then 100% MeOH for the next 10 min, then down to 30% MeOH/H₂O within one minute and further isocratic elution for 9 min. Fractions were collected for every minute starting at 6 min and ending at 40 min to afford 34 fractions. These fractions were assayed against *B. subtilis*, *S. cerevisiae*, *Pseudoxylaria* sp. X802, and *Termitomyces* sp. T112. Fractions 17–26 exhibited modest to moderate activity against *Pseudoxylaria* sp. X802 and *Termitomyces* sp. T112 (Figure S4), and against *B. subtilis* and *S. cerevisiae*.

Figure S4. Disc assay against *Termitomyces* sp. T112 with material fractionated by preparative reverse-phase HPLC

Fraction 17 was further purified by semi-preparative reverse-phase HPLC (Agilent 1200 Series HPLC system, Phenyl-hexyl column, Phenomenex Luna, 250×10.0 mm, 5 µm, flow rate: 2 mL/min) using isocratic elution with 33% MeCN/H₂O (+ 0.1% FA) over 35 min to afford compounds **1** (0.7 mg, t_R 27.7 min), **3** (t_R 2.5 mg, 16.7 min), **8** (t_R 1.8 mg, 24.2 min), and **9** (t_R 0.5 mg, 31.3 min) (Figure S5 and S6).

Fraction 18 was purified by semi-preparative reverse-phase HPLC (Phenyl-hexyl column, Phenomenex Luna, 250×10.0 mm, 5 µm, flow rate: 2 mL/min) using isocratic elution with 35% MeCN/H₂O (+ 0.1% FA) over 35 min to furnish compound **5** (1.1 mg, *t*_R 36.9 min).

Fractions 20 and 21 were consolidated and separated by semi-preparative reverse-phase HPLC (Phenyl-hexyl column, Phenomenex Luna, 250×10.0 mm, 5 µm, flow rate: 2 mL/min) using isocratic elution with 43% MeCN/H₂O (+ 0.1% FA) over 30 min to yield compound **7** (1.6 mg, *t*_R 18.9 min).

Fraction 22 was purified by semi-preparative reverse-phase HPLC (Phenyl-hexyl column, Phenomenex Luna, 250×10.0 mm, 5 µm, flow rate: 2 mL/min) using isocratic elution with 45% MeCN/H₂O (+ 0.1% FA) over 30 min to afford compound **6** (1.2 mg, *t*_R 20.0 min).

Fraction 25 was purified by semi-preparative reverse-phase HPLC (Phenyl-hexyl column, Phenomenex Luna, 250×10.0 mm, 5 µm, flow rate: 2 mL/min) using isocratic elution with 53% MeCN/H₂O (+ 0.1% FA) over 30 min to furnish compounds **2** (1.5 mg, t_R 13.0 min) and **4** (1.0 mg, t_R 19.1 min).

Figure S5. Trace from semi-preparative HPLC purification of fraction 17 (254 nm, flow rate: 2 mL/min, 33% MeCN/H₂O + 0.1% FA for 35 min)

Figure S6. LC-MS trace for **1** (green: negative ion scan, red: positive ion scan, blue: 254 nm, flow rate: 0.7 mL/min, LC-MS program: linear gradient 0–30 min from 10% MeCN/H₂O (+ 0.1% FA) to 100% MeCN + 0.1% FA, then 5 min isocratic elution with 100% MeCN + 0.1% FA, then ramp down over 1 min to and 6 min isocratic elution with 10% MeCN/H₂O (+ 0.1% FA))

Spectroscopic Data for New Compounds

1: amorphous powder; 0.7 mg (50 × 14 cm diameter agar plates); $[\alpha]_D^{25}$ -16.5 (*c* 0.04, MeOH); IR (KBr) v_{max} 3475, 3375, 3285, 2920, 1727, 1700, 1655, 1439, 1354, 1283, 1187, 1026 cm⁻¹; UV (MeOH) λ_{max} (log ε) 220 (4.2), 254 (1.8), 292 (1.0) nm; HR-ESIMS *m*/*z* 697.3310 [M + Na]⁺ (calcd for C₃₅H₅₀N₂O₁₁Na: 697.3312).

Antifungal activity:

S. cerevisiae: MFC₅₀ = $55 \pm 2 \mu g/mL$; MFC = 100 $\mu g/mL$

Antimicrobial activity:

B. subtilis: MIC₅₀ = $85 \pm 2 \mu g/mL$; MIC = $150 \mu g/mL$

8: amorphous powder; 1.8 mg (50 × 14 cm diameter agar plates); $[\alpha]_D^{25}$ +36.4 (*c* 0.03, MeOH); IR (KBr) v_{max} 3454, 3330, 2930, 2835, 1710, 1658, 1595, 1450, 1390, 1150 cm⁻¹; UV (MeOH) λ_{max} (log ε) 213 (3.6), 264 (4.1), 336 (3.2) nm; HR-ESIMS *m*/*z* 600.2880 [M + Na]⁺ (calcd for C₂₉H₄₃N₃O₉Na: 600.2897).

Figure S7. Chemical structures of isolated geldanamycin analogs. Note that the labels for 1 <u>do not</u> correspond to the atom labels used for quantum-chemical NMR calculations.

position	$\delta_{\rm C}$ (CDCl ₃), type ^{<i>a</i>}	$\delta_{\rm H}(J \text{ in Hz})$	COSY	НМВС
1	173.2, C			
2	137.6, C			
3	123.7, CH	5.75, br d (12.0)	H-4	C-1, C-5, C-22
4	130.1, CH	6.22, dd (12.0, 11.0)	H-3, H-5	C-2, C-6
5	128.2, CH	4.96, dd (11.0, 10.0)	H-4, H-6	C-3, C-7
6	75.4, CH	3.81, overlap	H-5, H-7	C-4, C-8
7	82.9, CH	4.91, d (8.5)	H-6	C-5, C-9, C-24, C-25
8	130.6, C			
9	134.1, CH	5.11, d (10.0)	H-10	C-7, C-25, C-26
10	35.2, CH	2.32, m	H-9, H-11, H-26	C-8
11	73.4, CH	3.59, m	H-10, H-12	C-26
12	80.6, CH	2.78, m	H-11, H-13	C-27
13	31.5, CH ₂	1.64, m; 0.55, m	H-12, H-14	C-28
14	30.8, CH	2.22, m	H-13, H-15, H-28	C-13, C-15
15	34.4, CH ₂	2.97, m; 2.65, m	H-14	C-13, C-14, C-16, C-17, C-21, C-28
16	130.3, C			
17	147.1, C			
18	_			
19	115.1, CH	6.66, s		C-17, C-20, C-21
20	129.5, C			
21	144.2, C			
22	16.9, CH ₃	1.93, s		C-1, C-2, C-3
23	57.0, CH ₃	3.09, s		C-6
24	156.9, C			
25	13.0, CH ₃	1.30, s		C-7, C-8, C-9
26	19.4, CH ₃	1.04, d (6.0)	H-10	C-9, C-10, C-11
27	57.4, CH ₃	3.31, s		C-12
28	16.9, CH ₃	0.60, d (6.5)	H-14	C-13, C-14, C-15
29	62.4, CH ₃	3.81, s		C-17
1'	107.0, CH	4.94, s		C-21, C-3', C-6'
2'	202.0, C			
3'	42.4, CH ₂	2.44, dd (11.0, 4.0)	H-4'	C-2', C-4'
		2.39, dd (11.0, 10.5)		
4'	49.4, CH	5.44, m	H-3', H-5'	
5'	20.8, CH ₃	1.34, d (7.0)	H-4′	C-3', C-4'
6′	59.7, CH ₃	3.57, s		C-1'
24-NH ₂		4.54, br s		

Table S2. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) data of 1 in CDCl₃

^{*a*} The assignments were based on ¹H-¹H COSY, gHSQC, TOCSY, and gHMBC experiments. C–H multiplicities were assigned through a gHSQCad experiment, and CH versus CH₃ was distinguished through ¹H integration.

position		25 °C		55 °C
1	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}}(J \text{ in Hz})^a$	$\delta_{\rm C}{}^a$, type	$\delta_{\mathrm{H}}(J \text{ in Hz})^a$
1	173.2, C		173.2, C	
2	137.6, C		137.7, C	
3	123.7, CH	5.75, br d (12.0)	123.8, CH	5.73, br d (11.0)
4	130.1, CH	6.22, dd (12.0, 11.0)	130.0, CH	6.23, dd (11.0, 11.0)
5	128.2, CH	4.96, dd (11.0, 10.0)	128.7, CH	5.01, dd (11.0, 10.0)
6	75.4, CH	3.81, overlap	75.8, CH	3.84, overlap
7	82.9, CH	4.91, d (8.5)	83.1, CH	4.94, d (9.0)
8	130.6, C		130.7, C	
9	134.1, CH	5.11, d (10.0)	134.5, CH	5.13, d (11.0)
10	35.2, CH	2.32, m	35.4, CH	2.37, m
11	73.4, CH	3.59, m	74.0, CH	3.60, dd (10.0, 2.5)
12	80.6, CH	2.78, m	81.3, CH	2.85, m
13	31.5, CH ₂	1.64, m; 0.55, m	31.8, CH ₂	1.60, m; 0.62, m
14	30.8, CH	2.22, m	31.1, CH	2.26, m
15	34.4, CH ₂	2.97, m; 2.65, m	32.9, CH ₂	3.01, m; 2.68, m
16	130.3, C		130.7, C	
17	147.1, C		147.2, C	
18	_		-	
19	115.1, CH	6.66, s	115.5, CH	6.67, s
20	129.5, C		129.6, C	
21	144.2, C		144.4, C	
22	16.9, CH ₃	1.93, s	17.1, CH ₃	1.95, s
23	57.0, CH ₃	3.09, s	57.1, CH ₃	3.13, s
24	156.9, C		157.3, C	
25	13.0, CH ₃	1.30, s	13.2, CH ₃	1.34, s
26	19.4, CH ₃	1.04, d (6.0)	19.5, CH ₃	1.06, d (6.5)
27	57.4, CH ₃	3.31, s	57.5, CH ₃	3.34, s
28	16.9, CH ₃	0.60, d (6.5)	17.6, CH ₃	0.66, d (6.5)
29	62.4, CH ₃	3.81, s	62.5, CH ₃	3.84, s
1′	107.0, CH	4.94, s	107.2, CH	4.95, s
2'	202.0, C		201.8, C	
3'	42.4, CH ₂	2.44, dd (11.0, 4.0)	42.6, CH ₂	2.41, m
	-	2.39, dd (11.0, 10.5)		2.39, m
4'	49.4, CH	5.44, m	49.7, CH	5.46, m
5'	20.8, CH ₃	1.34, d (7.0)	20.9, CH ₃	1.36, d (6.5)
6'	59.7. CH ₃	3.57. s	59.7. CH ₃	3.58. s
24-NH ₂	, ,	4.54. br s	,	4.51, br s
27 INII2		r.JT, UI 5		7.51,015

Table S3. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) data of 1 in CDCl₃ at 25 °C and 55 °C

^{*a*} The assignments were based on ¹H-¹H COSY, gHSQCad, TOCSY, and gHMBC experiments. C–H multiplicities were assigned through gHSQCad, and CH versus CH₃ was distinguished through ¹H integration.

position	$\delta_{\rm C}$ (CD ₃ OD), type ^{<i>a</i>}	$\delta_{\rm H}(J \text{ in Hz})$	COSY	HMBC
1	174.3, C			
2	137.2, C			
3	123.9, CH	5.86, br d (12.0)	H-4	C-1, C-5, C-22
4	129.7, CH	6.28, dd (12.0, 11.0)	H-3, H-5	C-2, C-6
5	128.7, CH	5.02, dd (11.0, 10.0)	H-4, H-6	C-3, C-7
6	75.9, CH	3.91, dd (10.0, 10.0)	H-5, H-7	C-4, C-8
7	82.9, CH	4.85, overlap	H-6	C-5, C-9, C-24, C-25
8	131.1, C			
9	134.7, CH	5.10, d (11.0)	H-10	C-7, C-25, C-26
10	35.6, CH	2.43, m	H-9, H-11, H-26	C-8
11	73.6, CH	3.55, dd (10.0, 2.5)	H-10, H-12	C-26
12	81.2, CH	2.84, m	H-11, H-13	C-27
13	32.3, CH ₂	1.68, m; 0.67, m	H-12, H-14	C-28
14	31.1, CH	2.21, m	H-13, H-15, H-28	C-13, C-15
15	32.2, CH ₂	2.99, m; 2.75, m	H-14	C-13, C-14, C-16, C-17, C-21, C-28
16	131.1, C			
17	148.3, C			
18	_			
19	116.0, CH	6.63, s		C-17, C-20, C-21
20	127.9, C			
21	143.1, C			
22	15.9, CH ₃	1.90, s		C-1, C-2, C-3
23	56.1, CH ₃	3.10, s		C-6
24	159.9, C			
25	12.7, CH ₃	1.39, s		C-7, C-8, C-9
26	18.7, CH ₃	0.99, d (6.5)	H-10	C-9, C-10, C-11
27	56.3, CH ₃	3.35, s		C-12
28	16.8, CH ₃	0.64, d (6.5)	H-14	C-13, C-14, C-15
29	60.7, CH ₃	3.76, s		C-17
1′	107.1, CH	4.99, s		C-21, C-3', C-6'
2'	203.0, C			
3'	41.7, CH ₂	2.41, m	H-4'	C-2', C-4'
		2.37, m		
4'	50.2, CH	5.32, m	H-3', H-5'	
5'	19.8, CH ₃	1.33, d (6.5)	H-4'	C-3', C-4'
6'	58.9, CH ₃	3.59, s		C-1′

Table S4. ¹ H NMR	(600 MHz) and 13	C NMR (150 MHz) data of 1 in CD ₃ OD

^{*a*} The assignments were based on ¹H-¹H COSY, gHSQCad, TOCSY, and gHMBC experiments. C–H multiplicities were assigned through gHSQCad, and CH versus CH₃ was distinguished through ¹H integration.

Position	8					
	$\delta_{\rm C} ({\rm CD}_3 {\rm OD})^a$	$\delta_{\rm H}(J \text{ in Hz})$	COSY	HMBC		
1	169.8, C					
2	130.9, C					
3	133.0, CH	7.51, br d (12.0)	H-4	C-1, C-5, C-22		
4	128.9, CH	6.64, dd (12.0, 11.0)	H-3, H-5	C-2, C-6		
5	134.8, CH	5.61, dd (11.0, 10.0)	H-4, H-6	C-3, C-7		
6	78.6, CH	4.34, dd (10.0, 6.5)	H-5, H-7	C-4, C-8		
7	81.1, CH	4.92, d (6.5)	H-6	C-5, C-9, C-24, C-25		
8	131.8, C					
9	133.5, CH	5.34, d (9.0)	H-10	C-7, C-25, C-26		
10	35.8, CH	2.38, m	H-9, H-11, H-26	C-8		
11	75.2, CH	3.52, dd (9.5, 2.0)	H-10, H-12	C-26		
12	82.3, CH	3.18, m	H-11, H-13	C-27		
13	36.0, CH ₂	1.58 m; 1.09, m	H-12, H-14	C-28		
14	29.8, CH	1.81, m	H-13, H-15, H-28	C-13, C-15		
15	32.0, CH ₂	2.27, dd (13.0, 8.5)	H-14	C-13, C-14, C-16, C-17, C-21, C-28		
		2.23, dd (13.0, 6.0)				
16	107.6, C					
17	151.4, C					
18	_					
19	95.3, CH	5.40, s		C-17, C-21		
20	_					
21	179.6, C					
22	12.5, CH ₃	1.93, s		C-1, C-2, C-3		
23	56.9, CH ₃	3.27, s		C-6		
24	158.7, C					
25	14.7, CH ₃	1.63, s		C-7, C-8, C-9		
26	17.7, CH ₃	0.96, d (6.0)	H-10	C-9, C-10, C-11		
27	56.9, CH ₃	3.33, s		C-12		
28	20.3, CH ₃	0.78, d (6.5)	H-14	C-13, C-14, C-15		
29				C-17		
30	52.4, CH ₃	3.75, s		C-1		

Table S5. 1 H NMR (600 MHz) and 13 C NMR (150 HMz) data of 8 in CD₃OD

^{*a*} The assignments were based on ¹H-¹H COSY, gHSQCad, TOCSY, and gHMBC experiments. C–H multiplicities were assigned through gHSQCad, and CH versus CH₃ was distinguished through ¹H integration.

Figure S8. Key HMBC, COSY and ROESY correlation of natalamycin A.

Single Crystal X-ray Diffraction Experimental Procedure

Colorless block crystals of 1 were obtained through slow evaporation from CHCl₃ with trace MeOH in a glass vial. A crystal was mounted in a 15 K helium cold stream on a Bruker D8 three-circle fixed chi goniometer with an Apex II CCD detector at the Advanced Photon Source synchrotron in Argonne National Laboratories (ChemMatCARS sector 15 beamline, experimental station ID-B), and a sphere of data to $2\theta = 31.6^{\circ}$ was collected. Integration was performed using SAINT.⁴ and a multi-scan absorption correction was applied to the data using SADABS.⁵ A total of 33421 reflections were collected, with 10598 unique reflections and 10533 reflections observed $[I>2\sigma(I)]$. The structure was solved through intrinsic phasing (SHELXT-2013) and refined by full-matrix least-squares on F^2 (SHELXL-2013) using 553 parameters and 6 restraints (1 ISOR restraint required) (Figure S8).⁶ Hydrogens were initially added using the riding model and methyl group hydrogens were refined as rigid idealized groups. Hydrogens on heteroatoms, initially placed through the riding model or assigned on the basis of residual electron density, were allowed to refine free with isotropic thermal parameters by removal of SHELXL AFIX directives, which were re-introduced / added after free refinement. Anomalous dispersion and absorption coefficients (f and f) for C, Cl, N, O were calculated for the synchrotron radiation wavelength used (0.41328 Å). The absolute stereochemistry was confirmed using Bayesian statistics on 4731 select Bijvoet pairs with a Hooft y parameter of 0.00(4).⁷

Figure S9. ORTEP plot of **1** a) with labels and no hydrogens displayed for clarity, and b) with hydrogens displayed. Thermal ellipsoids are shown at 50% probability. The X-ray atom labels do not correspond to the atom labels used for quantum-chemical NMR calculations.

Table S6. Crystal and structure refinement data for 1

Identification code	kt29-076res_a	
Empirical formula	C ₃₈ H ₅₃ Cl ₉ N ₂ O ₁₁	
Formula weight	1032.87	
Temperature	15.0 K	
Radiation	Synchrotron	
Wavelength	0.41328 Å	
Crystal system	Orthorhombic	
Space group	$P2_{1}2_{1}2_{1}$	
Unit cell dimensions	a = 12.9360(18) Å	α= 90°.
	b = 17.448(2) Å	β= 90°.
	c = 21.111(3) Å	$\gamma = 90^{\circ}$.
Volume	4764.9(11) Å ³	
Ζ	4	
Density (calculated)	1.440 Mg/m ³	
Absorption coefficient	0.303 mm ⁻¹	
<i>F</i> (000)	2144	
Color	Colorless	
Description	Block	
Crystal size	0.65 x 0.6 x 0.5 mm ³	
θ range for data collection	0.880 to 15.787°.	
Index ranges	$-9 \le h \le 16, -22 \le k \le 22, -27 \le$	$l \leq 27$
Reflections collected	33421	
Independent reflections	10598 [$R_{\rm int} = 0.0390$]	
Observed reflections $[I>2\sigma(I)]$	10533	
Completeness to $\theta = 14.357^{\circ}$	94.0%	
Absorption correction	Semi-empirical from equivalen	its
Max. and min. transmission	0.8503 and 0.6576	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	10598 / 6 / 553	
Goodness-of-fit on F^2	1.002	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0635, wR_2 = 0.1840$	
R indices (all data)	$R_1 = 0.0649, wR_2 = 0.1913$	
Absolute structure parameter (Hooft y)	0.00(4)	
Largest diff. peak and hole	0.834 and -0.594 e.Å ⁻³	

Computational Methods

All DFT electronic structure and NMR calculations were performed in *Gaussian 09 Revision A.02*,⁸ and conformational searches were performed in *Schrödinger Release 2013-2 MacroModel 10.1*.⁹ Initial searches to locate conformer candidates of **1** were performed in *MacroModel 10.1* using the advanced conformational search tool and macrocycle conformational sampling tool. C-clamp conformer candidates were located by first minimizing the X-ray crystal structure of **1** using molecular mechanics with the Merck Molecular Force Field (MMFF)¹⁰ and then using the advanced conformational search tool with the torsional sampling / Monte-Carlo Multiple Minimum (MCMM)¹¹ algorithm and MMFF minimization. The torsion between the macrocycle amide and diene was restricted by restricting the dihedral angle of the carbonyl and vinylic methyl group to -58.1° ± 5°. Extended conformer candidates were located through using the macrocycle conformational sampling tool with the OPLS_2005 force field¹² and with 4r distance dependent electrostatic treatment.

The computational procedure for the NMR calculations developed by Tantillo and co-workers was used,¹³ and all reported empirically scaled NMR chemical shift calculations were performed at the SCRF-mPW1PW91/6-311+G(2d,p)//B3LYP/6-31+G(d,p) level of theory.^{14,15} Therefore the conformer candidates (all within a 12.5 kJ/mol window)¹⁶ were first subjected to optimization and frequency (opt+freq) calculations in Gaussian 09 using B3LYP/6-31+G(d,p). Occasionally for difficult optimization cases (i.e., where the molecular geometry appears to "oscillate" and does not converge) it was necessary to stop and resume the job with calculating the analytic Hessian once using the opt=calcfc directive before proceeding with optimization using the default GEDIIS (Geometry optimization method using an Energy-represented Direct Inversion in the Iterative Subspace)¹⁷ algorithm. Frequency lists were checked to ensure that no imaginary frequencies were present (i.e., structure does not represent a saddle point on the potential energy hypersurface). Conformer candidates with absolute G values that were 2.5 kcal/mol above the global minimum at 298.15 K were excluded from further calculations. Through this procedure, two candidate conformers – one C-clamp (1a) and one extended (1b) – were located, and 1a was found to be the global minimum. NMR calculations were performed using the GIAO (gauge-independent atomic orbitals)¹⁸ method using the SCRFmPW1PW91/6-311+G(2d,p) level of theory, where SCRF (Self-Consistent Reaction Field) refers to inclusion of solvent effects arising from chloroform using the SMD implicit solvation model¹⁹ with default radii. The calculated NMR isotropic shifts were empirically scaled according to the formula:

 $\delta = (b - \sigma) / -m$, where δ is the calculated chemical shift referenced to TMS, σ is the calculated isotropic chemical shielding value, b is the y-intercept, and m is the slope. ¹H shifts used the following scaling factors: m = -1.0936, b = 31.8018, and ¹³C shifts used the following scaling factors: m = -1.0533, b = 186.5242, as obtained from the CHESHIRE CCAT website.^{13d} Methyl group proton and the carbamate nitrogen proton chemical shifts were averaged to account for chemical shift averaging on the experimental NMR timescale. The chemical shifts from both conformers were Boltzmann averaged at 298.15 K to yield the final calculated isotropic chemical shifts.

Gaussian 09 calculations were performed using the Odyssey cluster maintained by Research Computing (RC) of the Faculty of Arts and Science (FAS) at Harvard University. Comprised of multiple nodes, each node contains 4 AMD Opteron 6376 "Abu Dhabi" processors (where each processor has 8 floating point units (FPU), 16 integer cores, and 16 MB cache), 256 GB RAM, 250 GB local scratch space, and all nodes are linked with FDR Infiniband (IB) fabric. Each *Gaussian 09* calculation (either opt+freq or NMR) was executed under the CentOS 6.4 environment using a maximum of 64 integer cores and 64 GB RAM in shared memory parallel (SMP) fashion through the %nprocshared=64 and %mem=64GB directives, respectively, with non-exclusive node assignment. Opt+freq calculations would typically take 2–4 days, and NMR calculations would typically take 6 – 9 hours.

Note: 1 hartree = 1 a.u. ≈ 627.5095 kcal/mol

Computational Data

Figure S10. General atom labeling for C-clamp (1a) and extended (1b) conformer

Figure S11. Geometry of C-clamp conformer 1a

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
	 6	0	 1 110497	1 195873	1 978158
2	6	0	1.822987	1.436402	0.793758
3	6	0	2 568595	0 361364	0 263100
4	6	0	2.436627	-0.937822	0.782515
5	6	0	1.652796	-1.157778	1.919648
6	6	0	1.020601	-0.086995	2.540092
7	7	0	3.138874	-2.043857	0.202258
8	6	0	4.422165	-2.460513	0.828814
9	6	0	5.331348	-1.224362	1.006400
10	6	0	5.552892	-0.540615	-0.331266
11	6	0	4.782615	0.750180	-0.682935
12	8	0	3.368049	0.579165	-0.854629
13	6	0	1.734138	2.777670	0.092484
14	6	0	0.588698	2.913349	-0.962839
15	6	0	-0.804165	2.850638	-0.303026
16	6	0	-1.994913	2.994948	-1.258714
17	6	0	-3.338092	3.274316	-0.539179
18	6	0	-3.741191	2.266890	0.556906
19	8	0	-3.288189	4.572778	0.054989
20	6	0	-3.936177	0.873651	0.004213
21	6	0	-3.437671	-0.283892	0.473027
22	6	0	-2.492212	-0.411861	1.641931
23	6	0	-3.903910	-1.592051	-0.141442
24	6	0	2.755053	-2.681557	-0.966489
25	8	0	3.369100	-3.659742	-1.391312
26	6	0	1.622808	-2.123869	-1.797013
27	6	0	2.099822	-1.715911	-3.170916
28	6	0	0.337300	-2.144040	-1.375207
29	6	0	-0.801146	-1./10/15	-2.1/6280
30	6	0	-2.116213	-1.803/48	-1.888993
31	6	0	-2./88884	-2.482216	-0./24028
32	8	0	-4.555680	-2.3/1003	0.898501
33	6	0	-5.906476	-2.501598	0.821833
24	0 7	0	-6.359292	-1.901101	-0.013730
35	6	0	0.330202	1 925922	-2 127322
30	0	0	0.743741	-0 208021	-2.12/322
38	8	0	6 353677	-0 965271	-1 144161
30	6	0	4 243469	-3 236541	2 136840
40	6	0	-5 053584	2 722027	1 236164
41	8	0	-1.729763	4.112259	-2.134829
42	6	0	-2.403523	4.075891	-3.386045
43	8	0	0.392167	2.192800	2.627046
44	6	0	1.166318	2.989705	3.543275
45	8	0	5.105387	1.690203	0.305981
46	6	0	5.533797	2.968537	-0.172966
47	8	0	-3.442935	-3.672311	-1.181905
48	6	0	-2.569772	-4.764231	-1.428898
49	1	0	1.531788	-2.157651	2.318694
50	1	0	4.880168	-3.123066	0.092183
51	1	0	6.306927	-1.563190	1.368396
52	1	0	4.912449	-0.526697	1.737795
53	1	0	5.125234	1.063500	-1.673391
54	1	0	1.598454	3.570308	0.833727
55	1	0	2.677915	2.972733	-0.419206
56	1	0	0.704267	3.923734	-1.373651
57	1	0	-0.869886	3.626791	0.466758
58	1	0	-0.921855	1.891107	0.211436
59	1	0	-2.100221	2.085606	-1.866732
60	1	0	-4.133245	3.262043	-1.304810

Table S7. Coordinates of C-clamp conformer 1a (gas-phase B3LYP/6-31+G(d,p))

Rotational	constants	(GHZ):	0.0838621	0.0490005	0.0399060
98	1	0	-2.033190	-5.057423	-0.513736
97	1	0	-1.836159	-4.536391	-2.213231
96	1	Õ	-3.198058	-5.595356	-1.756342
95	1	0	6.480221	2.881458	-0.719916
94	- 1	0	5.683438	3.593998	0.708600
93	1	0	4.777916	3.428771	-0.819876
92	1	Ő	1,966407	3.523594	3.019821
91	1	0	1.606332	2.365961	4.330458
90	1	Ő	0.472118	3.708019	3.982979
89	- 1	0	-2.042971	4.931132	-3.962428
88	1	0	-3.493764	4.156563	-3.279303
87	1	0	-2.170752	3.151105	-3.933314
86	1	0	-4.947134	3.730113	1.642959
85	- 1	0	-5.318849	2.034236	2.044819
84	- 1	0	-5.882569	2.727292	0.518289
83	1	0	5.214382	-3.613374	2.475598
82	1	0	3.5842.81	-4.095703	1.980309
81	1	Ő	3.828344	-2.612536	2.934321
80	1	Õ	-0.206790	0.516005	3.851040
79	1	0	1.754801	1.971358	-2.547290
78	1	0	0.040555	2.161225	-2.929761
77	1	0	0.566016	0.893664	-1.811405
76	1	0	-5.699817	-3.848545	2.361235
75	1	0	-7.314390	-3.586648	1.795642
74	1	0	-2.074021	-2.747608	0.067332
73	1	0	-2.816820	-1.422282	-2.630716
72	1	0	-0.560699	-1.244359	-3.127651
71	1	0	0.132146	-2.509998	-0.372143
70	1	0	2.664642	-2.541730	-3.614810
69	1	0	2.777454	-0.857952	-3.096048
68	1	0	1.284715	-1.451830	-3.844516
67	1	0	-4.640429	-1.402983	-0.925309
66	1	0	-2.308694	0.544969	2.132273
65	1	0	-1.521849	-0.813639	1.328751
64	1	0	-2.897721	-1.104286	2.387201
63	1	0	-4.647059	0.812251	-0.822166
62	1	0	-2.819393	5.141168	-0.575988
61	1	0	-2.951610	2.276445	1.313531

T = 298.15 K

Zero-point correction= 0.823965 (Hartree/Particle) Thermal correction to Energy= 0.876091 Thermal correction to Enthalpy= 0.877036 Thermal correction to Gibbs Free Energy= 0.736540 Sum of electronic and zero-point Energies= -2300.036666 -2299.984540 Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= -2299.983596 Sum of electronic and thermal Free Energies= -2300.124091

Table S8. NMR isotropic and chemical shifts for **1a** (SCRF-mPW1PW91/6-311+G(2d,p)//B3LYP/6-31+G(d,p), SCRF = SMD, solvent = chloroform)

Atom	Isotropic	Scaled Shift	Experiment	$ \Delta $	Atom	Isotropic	Scaled Shift	Experiment	$ \Delta $
C1	33.6681	145.12	147.1	2.0	H61	29.156	2.42	2.32	0.10
C2	46.5614	132.88	130.3	2.6	H62	29.6793	1.94	n.d.	
C3	36.0143	142.89	144.2	1.3	H63	26.0777	5.23	5.11	0.12
C4	51.9767	127.74	129.5	1.8	H64	30.0107	1.64		
C5	66.3336	114.11	115.1	1.0	H65	30.8268	0.89		
C6	32.5814	146.15	n.d.	n.d.	H66	29.8489	1.79		
C8	131.5418	52.20	49.4	2.8	H67	26.4093	4.93	4.91	0.02
C9	142.8047	41.51	42.4	0.9	H68	29.5187	2.09		
C10	-27.455	203.15	202.0	1.2	H69	29.9204	1.72		
C11	75.3853	105.51	107.0	1.5	H70	29.5657	2.04		
C13	152.7922	32.03	34.4	2.4	H71	25.7183	5.56	5.75	0.19
C14	150.2484	34.44	30.8	3.6	H72	24.7874	6.41	6.22	0.19
C15	154.5783	30.33	31.5	1.2	H73	26.4414	4.90	4.96	0.06
C16	103.5401	78.78	80.6	1.8	H74	27.6591	3.79	3.81	0.02
C17	112.6345	70.15	73.4	3.2	H75	27.6937	3.76		
C18	147.1834	37.35	35.2	2.2	H76	27.2843	4.13		
C20	45.8206	133.58	134.1	0.5	H77	31.6741	0.12		
C21	45.3573	134.02	130.6	3.4	H78	30.9843	0.75		
C22	173.2706	12.58	13.0	0.4	H79	30.8349	0.88		
C23	101.8967	80.35	82.9	2.6	H80	26.0926	5.22	n.d.	
C24	7.2138	170.24	173.2	3.0	H81	30.4341	1.25		
C26	36.5841	142.35	137.6	4.8	H82	30.3024	1.37		
C27	169.7885	15.89	16.9	1.0	H83	30.4595	1.23		
C28	58.6	121.45	123.7	2.2	H84	31.0768	0.66		
C29	50.2923	129.34	130.1	0.8	H85	31.0901	0.65		
C30	53.1127	126.66	128.2	1.5	H86	30.0545	1.60		
C31	109.5591	73.07	75.4	2.3	H87	28.7537	2.79		
C33	23.4038	154.87	156.9	2.0	H88	28.1098	3.38		
C36	171.3527	14.40	16.9	2.5	H89	28.2697	3.23		
C39	166.3821	19.12	20.8	1.7	H90	27.701	3.75		
C40	167.7334	17.84	19.4	1.6	H91	28.0659	3.42		
C42	130.275	53.40	57.0	3.6	H92	27.8561	3.61		
C44	124.77	58.63	62.4	3.8	H93	27.6555	3.79		
C46	125.7968	57.65	59.7	2.0	H94	28.1152	3.37		
C48	130.6322	53.06	57.4	4.3	H95	28.0725	3.41		
H49	24.5342	6.65	6.66	0.01	H96	28.4509	3.06		
H50	26.1537	5.16	5.44	0.28	H97	28.5388	2.98		
H51	29.6112	2.00	2.39	0.39	H98	28.9191	2.64		
H52	29.2426	2.34	2.44	0.10	avg(H64–66)		1.44	1.30	0.14
H53	26.6902	4.67	4.94	0.27	avg(H68–70)		1.95	1.93	0.02
H54	28.9171	2.64	2.65	0.01	avg(H75–76)		3.94	4.54	0.60
H55	28.6106	2.92	2.97	0.05	avg(H77-79)		0.58	0.60	0.02
H56	29.438	2.16	2.22	0.06	avg(H81-83)		1.28	1.34	0.06
H57	30.0116	1.64	1.64	0.00	avg(H84-86)		0.97	1.04	0.07
H58	31.243	0.51	0.55	0.04	avg(H87-89)		3.13	3.31	0.18
H59	28.7399	2.80	2.78	0.02	avg(H90–92)		3.59	3.81	0.22
H60	27.8101	3.65	3.59	0.06	avg(H93-95)		3.52	3.57	0.05
					avg(H96–98)		2.89	3.09	0.20

Statistics with experimental data for **1a** only: ¹H CMAD: 0.12 ppm, Max. Deviation: 0.60 ppm (H75) ¹³C CMAD: 2.2 ppm, Max. Deviation: 4.8 ppm (C26)

Figure S12. Geometry of extended conformer 1b

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
	 6	0		1 544583			
2	6	0	-2 255974	1 452209	-0 885813		
3	6	0	-2 355266	0 314090	-0.060484		
4	6	0	-3 213896	-0 749375	-0 380314		
5	6	0	-4 048112	-0 653082	-1 500584		
6	6	0	-4.026481	0.495702	-2.283515		
7	7	0	-3 265872	-1 932951	0 431317		
8	,	0	-4 261538	-1 999281	1 533524		
9	6	0	-4 185529	-0 726287	2 399139		
10	6	0	-2 789733	-0 522544	2 955343		
11	6	0	-1.873633	0.544534	2.309572		
12	8	0	-1.464921	0.194028	1.004852		
13	6	0	-1 145831	2 464279	-0 693460		
14	6	0	0 192221	1 997416	-1 337593		
15	6	0	1 367058	2 937028	-0 985146		
16	6	0	1 905418	2 840944	0 448096		
17	6	0	3 388796	3 248560	0.597620		
18	6	0	4 403995	2 392416	-0 189708		
19	8	0	3 560407	4 610718	0.109700		
20	6	0	4 280262	9,010710 0 932514	0.202930		
20	6	0	4 059504	-0 122110	-0 629814		
21	6	0	3 886367	-0 035230	-2 127919		
22	6	0	1 003322	-1 /9/801	0 011289		
2.5	6	0	-2 754444	_3 130088	_0 021819		
25	8	0	_3 1/1823	-1 212427	0.021019		
25	6	0	-1 681004	-3 120055	_1 081359		
20	0	0	-2.032453	-3.129955	-2 308617		
27	0	0	-2.032433	-2 601520	-2.308017		
20	6	0	-0.4/1400	-2.001329	-1 617502		
29	6	0	0.710000	-2.521059	-1 272310		
30	6	0	2.011334	-2.321930	-1.273310		
31 30	0	0	2.022324	-2.219234	0.071964		
32	0	0	4.920/94	-2.309141	-0.702434		
33	6	0	5.693415	-3.203923	0.0543/1		
34	87	0	5.656399	-3.2/69/4	1.2/1010		
35		0	0.489443	-3.968297	-0.747052		
30	6	0	0.080929	1.8/81/3	-2.800/43		
37	8	0	-4.840845	0.588467	-3.3/4014		
38	8	0	-2.308276	-1.158410	3.905238		
39	6	0	-5.689/60	-2.252675	1.035447		
40	6	0	5.840977	2.884160	0.088602		
41	8	0	1.112057	3./36/85	1.262181		
42	6	0	1.104934	3.451459	2.652493		
43	8	0	-3.168312	2.634617	-2.821696		
44	6	0	-3.932930	3./5/4/8	-2.34/462		
45	8	0	-2.506040	1.803/8/	2.288681		
46	6	0	-2.643474	2.414586	3.5/12/4		
4 /	8	0	1.744429	-1.4/6/23	0.907797		
48	6	0	1.776398	-1.85/326	2.280787		
49	1	U	-4./07185	-1.4/1454	-1./66666		
50	1	0	-3.949670	-2.850362	2.142210		
51	1	U	-4.863746	-0.859708	3.24/998		
52	1	0	-4.506206	0.152504	1.831736		
53	1	0	-0.948475	0.572645	2.900298		
54	1	0	-1.424279	3.420178	-1.147434		
55	1	0	-0.993226	2.645893	0.369715		
56	1	0	0.424512	1.003206	-0.934440		
57	1	0	1.091043	3.979860	-1.185604		
58	1	0	2.185359	2.708529	-1.673870		
59	1	0	1.782958	1.815326	0.824304		

Table S9. Coordinates of extended conformer 1b (gas-phase B3LYP/6-31+G(d,p))

98	1	0	1.474148	-2.905843	2.406978
96 97	1	0	2.770709	-1.719131	2.725705
95	1	0	-3.322461	1.851904	4.225122
94	1	0	-3.060060	3.407294	3.394440
93	1	0	-1.669828	2.510058	4.069726
92	1	0	-3.519252	4.147037	-1.411399
91	1	Û	-4.981591	3.478205	-2.188/34
90	1	0	-3.866682	4.521653	-3.124199
89	Ţ	0	0.3/9/20	4.129846	3.108533
88	1	Û	2.082670	3.617266	3.125105
δ/	1	U	0./98082	2.412805	2.04102/
80 07	1	U	5.93/354	3.945818	-U.13084/
85	1	U	6.56U1/6	2.31/485	-U.SIIUZI
84 05	1	U	6.1U3311 C EC017C	2.746036	1.144831
83	1	Ű	-6.365108	-2.3/8133	1 144021
82	1	0	-5./21643	-3.169809	U.441652
Lά	1	U	- 0.000106	-1.419265	0.429524
δU 01	1	U	-4.5/0141	1 410265	-3.003/2/
79	1	0	-0.713583	1 202101	-3.10//38
78	1	0	1.019137	1 100222	-3.292//3
//	1	0	-0.133035	2.852146	-3.322976
70	1	0	0.381362	-3.750404	-1.720500
75	1	0	/.193133 6 E01E62	-4.531848	-0.29/912
74	1	0	2.8411/8	-3.189397	0.350946
73	1	0	2.733312	-2./12080	-2.045089
12	1	0	0.554150	-3.008775	-2.650103
/1	1	0	-0.348/40	-2.092195	0.168671
70	1	U	-2.8/2399	-3.4/42/3	-2.846509
69 70	1	Ű	-2.350382	-4.93/9/9	-2.011812
68	1	Ű	-1.19//02	-4.0261/9	-3.UU4231
67	1	0	4.356413	-1.421250	1.040581
00	1	0	4.180123	0.940932	-2.51/6/3
65	1	0	2.845970	-0.21/425	-2.419341
64	1	0	4.49/289	-0./93265	-2.628392
63	1	0	4.420883	0.727928	1.239083
62	1	0	2.806296	5.100915	0.563866
61	1	0	4.201493	2.540065	-1.254059
60	1	0	3.650277	3.148961	1.665496
<u> </u>	1	0	2 (50277	2 140001	1 ((E 4 0 (

T = 298.15 K

Zero-point correction=	0.823321 (Hartree/Particle)
Thermal correction to Energy=	0.875688
Thermal correction to Enthalpy=	0.876632
Thermal correction to Gibbs Free Energy=	0.735523
Sum of electronic and zero-point Energies=	-2300.034578
Sum of electronic and thermal Energies=	-2299.982211
Sum of electronic and thermal Enthalpies=	-2299.981267
Sum of electronic and thermal Free Energies=	-2300.122376

Table S10. NMR isotropic and chemical shifts for **1b** (SCRF-mPW1PW91/6-311+G(2d,p)//B3LYP/6-31+G(d,p), SCRF = SMD, solvent = chloroform)

Atom	Isotropic	Scaled Shift	Experiment	$ \Delta $	Atom	Isotropic	Scaled Shift	Experiment	$ \Delta $
C1	34.2704	144.55	147.1	2.6	H61	29.0163	2.55	2.32	0.23
C2	43.9255	135.38	130.3	5.1	H62	29.8517	1.78	n.d.	n.d.
C3	37.0159	141.94	144.2	2.3	H63	25.9468	5.35	5.11	0.24
C4	50.3624	129.27	129.5	0.2	H64	30.1056	1.55		
C5	67.6551	112.85	115.1	2.2	H65	30.2583	1.41		
C6	34.2792	144.54	n.d.	n.d.	H66	29.6681	1.95		
C8	130.347	53.33	49.4	3.9	H67	26.0887	5.22	4.91	0.31
C9	144.0587	40.32	42.4	2.1	H68	29.6691	1.95		
C10	-35.4354	210.73	202.0	8.7	H69	29.7132	1.91		
C11	77.8843	103.14	107.0	3.9	H70	30.4415	1.24		
C13	152.3038	32.49	34.4	1.9	H71	24.2402	6.91	5.75	1.16
C14	146.1362	38.34	30.8	7.5	H72	25.1993	6.04	6.22	0.18
C15	149.5956	35.06	31.5	3.6	H73	25.7355	5.55	4.96	0.59
C16	97.4207	84.59	80.6	4.0	H74	27.3909	4.03	3.81	0.22
C17	111.441	71.28	73.4	2.1	H75	27.476	3.96		
C18	146.5901	37.91	35.2	2.7	H76	27.1008	4.30		
C20	44.2278	135.10	134.1	1.0	H77	31.1906	0.56		
C21	46.0994	133.32	130.6	2.7	H78	31.3	0.46		
C22	172.3616	13.45	13.0	0.4	H79	31.2964	0.46		
C23	105.3481	77.07	82.9	5.8	H80	26.0067	5.30	n.d.	n.d.
C24	5.0296	172.31	173.2	0.9	H81	30.621	1.08		
C26	42.6289	136.61	137.6	1.0	H82	30.0181	1.63		
C27	172.0248	13.77	16.9	3.1	H83	30.6611	1.04		
C28	56.534	123.41	123.7	0.3	H84	30.967	0.76		
C29	55.8195	124.09	130.1	6.0	H85	30.9455	0.78		
C30	49.0377	130.53	128.2	2.3	H86	30.017	1.63		
C31	101.6999	80.53	75.4	5.1	H87	28.4171	3.10		
C33	24.9336	153.41	156.9	3.5	H88	27.9304	3.54		
C36	166.3652	19.14	16.9	2.2	H89	28.079	3.40		
C39	168.1706	17.42	20.8	3.4	H90	27.7944	3.66		
C40	168.1099	17.48	19.4	1.9	H91	28.0595	3.42		
C42	130.1738	53.50	57.0	3.5	H92	27.8924	3.57		
C44	124.2557	59.12	62.4	3.3	H93	28.3589	3.15		
C46	131.5936	52.15	59.7	7.5	H94	28.0822	3.40		
C48	128.4689	55.12	57.4	2.3	H95	28.7646	2.78		
H49	24.7323	6.46	6.66	0.20	H96	27.9692	3.50		
H50	26.8086	4.57	5.44	0.87	H97	28.1783	3.31		
H51	29.7403	1.89	2.39	0.50	H98	28.3623	3.15		
H52	28.9562	2.60	2.44	0.16	avg(H64–66)		1.64	1.30	0.34
H53	26.664	4.70	4.94	0.24	avg(H68-70)		1.70	1.93	0.23
H54	29.5633	2.05	2.65	0.60	avg(H75-76)		4.13	4.54	0.41
H55	28.1077	3.38	2.97	0.41	avg(H77-79)		0.49	0.60	0.11
H56	30.2469	1.42	2.22	0.80	avg(H81-83)		1.25	1.34	0.09
H57	30.6226	1.08	1.64	0.56	avg(H84-86)		1.06	1.04	0.02
H58	30.2054	1.46	0.55	0.91	avg(H87-89)		3.35	3.31	0.04
H59	28.1585	3.33	2.78	0.55	avg(H90–92)		3.55	3.81	0.26
H60	27.7423	3.71	3.59	0.12	avg(H93–95)		3.11	3.57	0.46
					avg(H96–98)		3.32	3.09	0.23

Statistics with experimental data for **1b** only: ¹H CMAD: 0.38 ppm, Max. Deviation: 1.16 ppm (H71) ¹³C CMAD: 3.2 ppm, Max. Deviation: 8.7 ppm (C10)

Table S11. Final Boltzmann-averaged NMR shifts for **1** (SCRF-mPW1PW91/6-311+G(2d,p)//B3LYP/6-31+G(d,p), SCRF = SMD, solvent = chloroform)

	Boltzmann-				Boltzmann-		
Atom	averaged shift	Experiment	$ \Delta $	Atom	averaged shift	Experiment	$ \Delta $
C1	145.04	147.1	2.1	C46	56.88	59.7	2.8
C2	133.23	130.3	2.9	C48	53.35	57.4	4.0
C3	142.76	144.2	1.4	H49	6.62	6.66	0.04
C4	127.95	129.5	1.5	H50	5.08	5.44	0.36
C5	113.93	115.1	1.2	H51	1.99	2.39	0.40
C6	145.93	n.d.	n.d.	H52	2.38	2.44	0.06
C8	52.36	49.4	3.0	H53	4.68	4.94	0.26
C9	41.34	42.4	1.1	H54	2.56	2.65	0.09
C10	204.21	202.0	2.2	H55	2.98	2.97	0.01
C11	105.18	107.0	1.8	H56	2.06	2.22	0.16
C13	32.09	34.4	2.3	H57	1.56	1.64	0.08
C14	34.99	30.8	4.2	H58	0.64	0.55	0.09
C15	30.99	31.5	0.5	H59	2.87	2.78	0.09
C16	79.60	80.6	1.0	H60	3.66	3.59	0.07
C17	70.31	73.4	3.1	H61	2.44	2.32	0.12
C18	37.43	35.2	2.2	H62	1.92	n.d.	n.d.
C20	133.80	134.1	0.3	H63	5.25	5.11	0.14
C21	133.92	130.6	3.3	avg (H64-66)	1.47	1.30	0.17
C22	12.70	13.0	0.3	H67	4.97	4.91	0.06
C23	79.89	82.9	3.0	avg(H68-70)	1.92	1.93	0.01
C24	170.53	173.2	2.7	H71	5.75	5.75	0.00
C26	141.55	137.6	4.0	H72	6.36	6.22	0.14
C27	15.59	16.9	1.3	H73	4.99	4.96	0.03
C28	121.73	123.7	2.0	H74	3.82	3.81	0.01
C29	128.60	130.1	1.5	avg(H75-76)	3.97	4.54	0.57
C30	127.20	128.2	1.0	avg(H77-79)	0.57	0.60	0.03
C31	74.11	75.4	1.3	H80	5.23	n.d.	n.d.
C33	154.66	156.9	2.2	avg (H81-83)	1.28	1.34	0.06
C36	15.07	16.9	1.8	avg (H84-86)	0.98	1.04	0.06
C39	18.89	20.8	1.9	avg (H87-89)	3.16	3.31	0.15
C40	17.79	19.4	1.6	avg (H90-92)	3.59	3.81	0.22
C42	53.42	57.0	3.6	avg (H93-95)	3.47	3.57	0.01
C44	58.70	62.4	3.7	avg (H96-98)	2.95	3.09	0.14

References

- (1) S. C. Hsu, J. L. Lockwood, Appl. Microbiol., 1975, 29, 422–426.
- (2) L. B. Reller, M. Weinstein, J. H. Jorgensen, M. J. Ferraro, Clin. Infect Dis., 2009, 49, 1749–1755.
- (3) http://www.excelcurvefitting.com/
- (4) SAINT; Bruker AXS Inc.: Madison, Wisconsin, USA, 2012.
- (5) G. M. Sheldrick, SADABS, 2008.
- (6) G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- (7) R. W. Hooft, L. H. Straver, A. L. Spek, J. Appl. Cryst., 2008, 41, 96–103.
- (8) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09, Revision A.02*, Gaussian, Inc., Wallingford CT, 2009.
- (9) Macromodel, Version 10.1, Schrödinger, LLC, New York, NY, 2013.
- (10) T. A. Halgren, J. Comp. Chem., 1996, 17, 490-519.
- (11) G. Chang, W. C. Guida, W. C. Still, J. Am. Chem. Soc., 1989, 111, 4379-4386.
- (12) J. L. Banks, H. S. Beard, Y. Cao, A. E. Cho, W. Damm, R. Farid, A. K. Felts, T. A. Halgren, D. T. Mainz, J. R. Maple, R. Murphy, D. M. Philipp, M. P. Repasky, L. Y. Zhang, B. J. Berne, R. A. Friesner, E. Gallicchio, R. M. Levy, *J. Comp. Chem.*, 2005, **26**, 1752–1780.
- (13) (a) M. W. Lodewyk, C. Soldi, P. B. Jones, M. M. Olmstead, J. Rita, J. T. Shaw, D. J. Tantillo, *J. Am. Chem. Soc.*, 2012, **134**, 18550–18553; (b) M. W. Lodewyk, D. J. Tantillo, *J. Nat. Prod.*, 2011, **74**, 1339–1343; (c) M. W. Lodewyk, M. R. Siebert, D. J. Tantillo, *Chem. Rev.*, 2012, **112**, 1839–1862; (d) CHESHIRE Chemical Shift Repository. http://cheshirenmr.info (accessed November 22, 2013).
- (14) MPW1PW91: C. Adamo, V. Barone, J. Chem. Phys., 1998, 108, 664-675.
- (15) B3LYP: (A) A. D. Becke, J. Chem. Phys., 1993, 98, 1372–1377; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652; (c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1998, 37, 785–789; (d) P. J.

Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623–11627; (e) J. Tirado-Rives, W. L. Jorgensen, *J. Chem. Theory Comput.*, 2008, **4**, 297–306.

- (16) A 10 kJ/mol cutoff is typically sufficient: (a) S. G. Smith, R. S. Paton, J. W. Burton, J. M. Goodman, J. Org. Chem., 2008, 73, 4053–4062; (b) S. G. Smith, J. M. Goodman, J. Org. Chem., 2009, 74, 4597–4607; (c) S. G. Smith, J. A. Channon, I. Paterson, J. M. Goodman, Tetrahedron, 2010, 66, 6437–6444; (d) S. G. Smith, J. M. Goodman, J. Am. Chem. Soc., 2010, 132, 12946–12959.
- (17) X. S. Li, M. J. Frisch, J. Chem. Theory Comput., 2006, 2, 835-839.
- (18) F. London, J. Phys. Radium, 1937, 8, 397–409; (b) R. McWeeny, Phys. Rev., 1962, 126, 1028–1034; (c) R. Ditchfield, Mol. Phys., 1974, 27, 789–807; (d) K. Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251–8260; (e) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys., 1996, 104, 5497–5509.
- (19) A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.