Supporting Information for:

An Organic Cation as a Silver(I) Analogue for the Arylation of sp² and sp³ C–H Bonds with Iodoarenes

Carlos Arroniz, J. Gabriel Denis, Alan Ironmonger, Gerasimos Rassias and Igor Larrosa*

aQueen Mary University of London, School of Biological and Chemical Sciences, Joseph Priestley Building, Mile End Road, London E1 4NS, United Kingdom
bGlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom

*To whom correspondence should be addressed. E-mail: i.larrosa@qmul.ac.uk
Table of Contents

General Information .. 3
General Procedure for Arylation Reactions ... 3
Screening of Solvents ... 4
Procedures and Characterization Data of the Synthesized Compounds 4
Large Scale Model Reaction .. 19
Presence of NMe₄I and PdI₂ in the Reaction Medium .. 20
Solubility of Ammonium Iodide Salts in Acetic Acid ... 21
Copies of ¹H NMR and ¹³C NMR Spectra ... 22
General Information

Unless otherwise noted, all the reagents were purchased from chemical companies and used without further purification. Column chromatography was carried out on silica gel, particle size 40-63 μm, using flash techniques. Analytical thin layer chromatography was performed on pre-coated aluminium-backed silica gel F254 plates with visualization under UV light. Purification by preparative LC-MS was conducted on a Waters 2767 HPLC equipped with a Waters ZQ MS detector and a Sunfire C18 column (100mm x 19mm i.d. 5μm packing diameter). All preparative LC-MS runs were performed using 0.1% v/v solution of formic acid in mixtures of water and acetonitrile as eluents. Melting points were obtained using a hot-stage apparatus and are uncorrected. Infrared spectra were recorded on a Perkin Elmer FT-IR Spectrometer. High resolution mass spectra for new compounds were recorded at Mass Spectrometry Facilities at GlaxoSmithKline. 1H NMR spectra, recorded at 400 MHz are referenced to the residual solvent peak at 7.26 ppm (CDCl$_3$). 13C NMR spectra, recorded at 101 MHz, are referenced to the residual solvent peak at 77.0 ppm (CDCl$_3$). Unless otherwise stated, all reactions were carried out in sealed vials.

General Procedure for Arylation Reactions

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (0.63-1.25 mmol), NMe$_4$Cl (0.63-0.88 mmol), aryl substrate (0.50 mmol) and iodoarene (0.5-1.5 mmol) in acetic acid (43 μL) was stirred at the temperature and for the time indicated in schemes. If appropriate, more KOAc (0.25-0.75 mmol) and NMe$_4$Cl (0.25-0.75 mmol) were added during that time. Then, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc and the filtrate evaporated to dryness. The crude was purified by re-slurry process, flash column chromatography or preparative LC-MS to afford the corresponding product.
Screening of Solvents

Table S1. Screening of solvents

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>1,4-Dioxane</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>EtOAc</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>PhCl</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>PhMe</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>DMF</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>DMSO</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>EtOH</td>
<td>0</td>
</tr>
</tbody>
</table>

^a Unless otherwise noted, all reactions were carried out using 0.5 mmol of 1 and 3 equiv of 2. NMe₄Cl and KOAc were added in two portions. Yields were determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Procedures and Characterization Data of the Synthesized Compounds

5-Bromo-3-chloro-3',5'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (3aa)

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe₄Cl (69 mg, 0.63 mmol), 4-bromo-2-chlorobenzoic acid (118 mg, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 µL, 1.5 mmol) in acetic acid (43 µL) was heated at 120 °C for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe₄Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite[®] with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO₄, filtered and concentrated. The crude product was purified by flash column chromatography (from CH₂Cl₂:EtOAc:AcOH 97:2.5:0.5 to CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5) to afford 5-bromo-3-chloro-3',5'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (3aa) as a white solid.
(130 mg, 77%). Rf 0.2 (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 1.6 Hz, 1H), 7.45 (d, J = 1.6 Hz, 1H), 7.02 (s, 1H), 7.01 (s, 2H), 2.32 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 143.2, 138.3, 137.6, 131.8, 131.3, 131.1, 130.6, 130.3, 126.0, 123.7, 21.2. These data are consistent with those previously reported.¹

5-Bromo-3-chloro-[1,1'-biphenyl]-2-carboxylic acid (3ab)

```
Cl  CO₂H
\   /\    \\
\  /  \   \\
\ /   \  \\
/     /  \\
```

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe₄Cl (69 mg, 0.63 mmol), 4-bromo-2-chlorobenzoic acid (118 mg, 0.50 mmol) and iodo benzene (167 μL, 1.5 mmol) in acetic acid (43 μL) was heated at 120 ºC for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe₄Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 ºC for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO₄, filtered and evaporated to dryness. The residue was taken up with EtOAc and washed with 2.0 M aqueous NaOH. The aqueous layer was acidified to pH=1 with 2.0 M aqueous HCl and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried over anhydrous MgSO₄, filtered and concentrated. The crude product was purified by flash column chromatography (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5) to afford 5-bromo-3-chloro-[1,1'-biphenyl]-2-carboxylic acid (3ab) as a white solid (99 mg, 64%). Rf 0.1 (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 1.8 Hz, 1H), 7.47 (d, J = 1.8 Hz, 1H), 7.43 – 7.37 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 143.0, 137.7, 132.0, 131.4, 131.0, 130.9, 128.7, 128.7, 128.2, 123.9. These data are consistent with those previously reported.¹

5-Bromo-3-chloro-4'-methyl-[1,1'-biphenyl]-2-carboxylic acid (3ac)

```
Cl  CO₂H
\   /\    \\
\  /  \   \\
\ /   \  \\
/     /  \\
```

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe₄Cl (69 mg, 0.63 mmol), 4-bromo-2-chlorobenzoic acid (118 mg, 0.50 mmol) and 4-iodotoluene (327 mg, 1.5 mmol) in acetic acid (43 μL) was heated at 120 ºC for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe₄Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 ºC for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO₄, filtered and evaporated to dryness. The residue was taken up with EtOAc and
washed with 2.0 M aqueous NaOH. The aqueous layer was acidified to pH=1 with 2.0 M aqueous HCl and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried over anhydrous MgSO₄, filtered and concentrated. The crude product was purified by *flash* column chromatography (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5) to afford 5-bromo-3-chloro-4'-methoxy-[1,1'-biphenyl]-2-carboxylic acid (3ad) as a yellowish solid (98 mg, 60%). Rf 0.1 (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 1.7 Hz, 1H), 7.45 (d, *J* = 1.7 Hz, 1H), 7.31 – 7.27 (m, 2H), 7.23 – 7.18 (m, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 143.0, 138.6, 134.9, 131.9, 131.4, 131.0, 130.7, 129.4, 128.1, 123.9, 21.2. These data are consistent with those previously reported.¹

5-Bromo-3-chloro-4'-methoxy-[1,1'-biphenyl]-2-carboxylic acid (3ad)

![Chemical structure of 5-Bromo-3-chloro-4'-methoxy-[1,1'-biphenyl]-2-carboxylic acid (3ad)]

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe₄Cl (69 mg, 0.63 mmol), 4-bromo-2-chlorobenzoic acid (118 mg, 0.50 mmol) and 4-iodoanisole (351 mg, 1.5 mmol) in acetic acid (43 μL) was heated at 120 ºC for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe₄Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 ºC for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO₄, filtered and evaporated to dryness. The residue was taken up with EtOAc and washed with 2.0 M aqueous NaOH. The aqueous layer was acidified to pH=1 with 2.0 M aqueous HCl and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried over anhydrous MgSO₄, filtered and concentrated. The crude product was purified by *flash* column chromatography (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5) to afford 5-bromo-3-chloro-4'-methoxy-[1,1'-biphenyl]-2-carboxylic acid (3ad) as a white solid (99 mg, 58%). Rf 0.1 (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, *J* = 1.7 Hz, 1H), 7.45 (d, *J* = 1.7 Hz, 1H), 7.36 – 7.30 (m, 2H), 6.97 – 6.89 (m, 2H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 160.0, 142.7, 131.8, 131.4, 131.0, 130.5, 130.1, 129.4, 123.8, 114.2, 55.3. These data are consistent with those previously reported.¹

5-Bromo-3-chloro-4'-fluoro-[1,1'-biphenyl]-2-carboxylic acid (3ae)

![Chemical structure of 5-Bromo-3-chloro-4'-fluoro-[1,1'-biphenyl]-2-carboxylic acid (3ae)]

S-6
A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe$_3$Cl (69 mg, 0.63 mmol), 4-bromo-2-chlorobenzoic acid (118 mg, 0.50 mmol) and 4-fluoriodobenzene (173 μL, 1.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe$_3$Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO$_4$, filtered and evaporated to dryness. The residue was taken up with EtOAc and washed with 2.0 M aqueous NaOH. The aqueous layer was acidified to pH=1 with 2.0 M aqueous HCl and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried over anhydrous MgSO$_4$, filtered and concentrated. The crude product was purified by preparative LC-MS to afford 3-fluoro-3',5'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (3ba) as a white foam (72 mg, 59%). 1H NMR (400 MHz, CDCl$_3$) δ 7.44 (td, J = 8.0, 5.7 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.11 (t, J = 8.0 Hz, 1H), 7.02 (s, 3H), 2.33 (s, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 171.0, 159.8 (d, J = 252.1 Hz), 143.00 (d, J = 2.2 Hz), 138.9 (d, J = 2.1 Hz), 138.1, 131.5 (d, J = 9.1 Hz), 129.8, 126.1, 125.7 (d, J = 3.0 Hz), 120.4 (d, J = 15.8 Hz), 114.4 (d, J = 21.5 Hz), 21.2. These data are consistent with those previously reported.1

3,3',5'-Trimethyl-[1,1'-biphenyl]-2-carboxylic acid (3ac)
A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe$_3$Cl (69 mg, 0.63 mmol), o-toluic acid (68 mg, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 μL, 1.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe$_3$Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO$_4$, filtered and evaporated to dryness. The residue was taken up with EtOAc and washed with 2.0 M aqueous NaOH. The aqueous layer was acidified to pH=1 with 2.0 M aqueous HCl and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried over anhydrous MgSO$_4$, filtered and concentrated. The crude product was purified by flash column chromatography (from CH$_2$Cl$_2$:EtOAc:AcOH 98:1.5:0.5) to afford 3,3’,5’-trimethyl-1,1’-biphenyl-2-carboxylic acid (3ca) as a white solid (100 mg, 83%). Rf 0.3 (CH$_2$Cl$_2$:EtOAc:AcOH 95:4.5:0.5); 1H NMR (400 MHz, CDCl$_3$) δ 7.35 (t, J = 7.7 Hz, 2H), 7.04 (s, 2H), 6.98 (s, 1H), 2.39 (s, 6H), 2.29 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 175.2, 140.5, 140.3, 137.8, 135.2, 132.1, 129.6, 129.2, 127.4, 126.2, 21.3, 19.8. These data are consistent with those previously reported.\(^2\)

2-(3,5-Dimethylphenyl)-1-naphthoic acid (3da)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe$_3$Cl (69 mg, 0.63 mmol), 1-naphthoic acid (86 mg, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 μL, 1.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe$_3$Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO$_4$, filtered and evaporated to dryness. The residue was taken up with EtOAc and washed with 2.0 M aqueous NaOH. The aqueous layer was acidified to pH=1 with 2.0 M aqueous HCl and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried over anhydrous MgSO$_4$, filtered and concentrated. The crude product was purified by flash column chromatography (from CH$_2$Cl$_2$:EtOAc:AcOH 98:1.5:0.5) to afford 2-(3,5-dimethylphenyl)-1-naphthoic acid (3da) as a yellowish foam (118 mg, 85%). Rf 0.3 (CH$_2$Cl$_2$:EtOAc:AcOH 95:4.5:0.5); 1H NMR (400 MHz, CDCl$_3$) δ 8.10 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.66 – 7.50 (m, 3H), 7.20 (s, 2H), 7.07 (s, 1H), 2.39 (s, 6H); 13C NMR...
(101 MHz, CDCl₃) δ 174.7, 140.5, 138.5, 138.1, 132.2, 130.2, 129.7, 129.5, 128.6, 128.2, 127.7, 127.5, 126.5, 126.3, 125.0, 21.3. These data are consistent with those previously reported.¹

4-Chloro-3',5'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (3ea)

![Chemical Structure of 4-Chloro-3',5'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (3ea)]

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe₄Cl (69 mg, 0.63 mmol), 3-chlorobenzoic acid (78 mg, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 μL, 1.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe₄Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO₄, filtered and evaporated to dryness. The crude product was purified by flash column chromatography (from CH₂Cl₂:EtOAc:AcOH 98:1.5:0.5 to CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5) to afford 4-chloro-3',5'-dimethyl-[1,1'-biphenyl]-2-carboxylic acid (3ea) as a white solid (98 mg, 75%). mp 132–134 °C; Rf 0.3 (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 2.2 Hz, 1H), 7.50 (dd, J = 8.3, 2.2 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 7.00 (s, 1H), 6.92 (s, 2H), 2.33 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 172.2, 141.9, 139.7, 137.7, 133.0, 132.5, 131.8, 130.8, 130.3, 129.4, 126.2, 21.2; HRMS (ESI) calcd. C₁₅H₁₄ClO₂: ([M+H]⁺), 261.0677; found: ([M+H]⁺), 261.0676.

3',4,5'-Trimethyl-[1,1'-biphenyl]-2-carboxylic acid (3fa)

![Chemical Structure of 3',4,5'-Trimethyl-[1,1'-biphenyl]-2-carboxylic acid (3fa)]

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe₄Cl (69 mg, 0.63 mmol), m-toluic acid (68 mg, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 μL, 1.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe₄Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO₄, filtered and evaporated to dryness. The residue was taken up with EtOAc and washed with 2.0 M aqueous NaOH. The aqueous layer was acidified to pH=1 with 2.0 M aqueous HCl and extracted with EtOAc (3 × 10 mL). The organic layers were
combined, dried over anhydrous MgSO₄, filtered and concentrated. The crude product was purified by flash column chromatography (from CH₂Cl₂:EtOAc:AcOH 98:1.5:0.5 to CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5) to afford 3',4,5'-trimethyl-[1,1'-biphenyl]-2-carboxylic acid (3fa) as a white solid (101 mg, 84%). mp 146–148 °C; Rf 0.3 (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 1.2 Hz, 1H), 7.35 (dd, J = 8.0, 1.2 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 6.98 (s, 1H), 6.95 (s, 2H), 2.42 (s, 3H), 2.33 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 140.8, 140.6, 137.5, 136.8, 132.7, 131.1, 131.0, 129.2, 128.9, 126.4, 21.3, 20.8; HRMS (ESI) calcd. C₁₆H₁₇O₂: ([M+H]+), 241.1223; found: ([M+H]+), 241.1222.

3',4,5,5'-Tetramethyl-[1,1'-biphenyl]-2-carboxylic acid (3ga)

A mixture of Pd(OAc)$_₂$ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe$_₄$Cl (69 mg, 0.63 mmol), 3,4-dimethylbenzoic acid (75 mg, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 μL, 1.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe$_₄$Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO₄, filtered and evaporated to dryness. The residue was taken up with EtOAc and washed with 2.0 M aqueous NaOH. The aqueous layer was acidified to pH=1 with 2.0 M aqueous HCl and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried over anhydrous MgSO₄, filtered and concentrated. The crude product was purified by flash column chromatography (from CH₂Cl₂:EtOAc:AcOH 98:1.5:0.5 to CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5) to afford 3',4,5,5'-tetramethyl-[1,1'-biphenyl]-2-carboxylic acid (3ga) as a white solid (105 mg, 83%). Rf 0.4 (CH₂Cl₂:EtOAc:AcOH 95:4.5:0.5); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.11 (s, 1H), 6.97 (s, 1H), 6.93 (s, 2H), 2.33 (s, 6H), 2.32 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 141.3, 141.3, 141.0, 137.3, 135.4, 132.6, 131.9, 128.8, 126.4, 21.3, 19.8, 19.2. Signal for one aromatic carbon could not be located. These data are consistent with those previously reported.³

3-(3,5-Dimethylphenyl)-2-naphthoic acid (3ha)
A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (98 mg, 1 mmol), NMe$_4$Cl (69 mg, 0.63 mmol), 2-naphthoic acid (75 mg, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 µL, 1.5 mmol) in acetic acid (43 µL) was heated at 120 ºC for 24 h. Then, the reaction was cooled down, KOAc (39 mg, 0.4 mmol) and NMe$_4$Cl (44 mg, 0.4 mmol) were added and the mixture stirred at 120 ºC for 24 h. After this time, the reaction mixture was quenched by addition of 2.0 M aqueous HCl (1 mL) and then filtered through a plug of Celite® with EtOAc (10 mL). The filtrate was dried over anhydrous MgSO$_4$, filtered and evaporated to dryness. The residue was taken up with EtOAc and washed with 2.0 M aqueous NaOH. The aqueous layer was acidified to pH=1 with 2.0 M aqueous HCl and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried over anhydrous MgSO$_4$, filtered and concentrated. The crude product was purified preparative LC-MS to afford 3-(3,5-dimethylphenyl)-2-naphthoic acid (3ha) as a white solid (84 mg, 61%). mp 157–159 ºC; 1H NMR (400 MHz, CDCl$_3$) δ 8.53 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.82 (s, 1H), 7.64–7.53 (m, 2H), 7.08 (s, 2H), 7.02 (s, 1H), 2.38 (s, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 173.3, 141.0, 139.2, 137.5, 134.7, 132.1, 130.1, 129.0, 128.7, 128.5, 127.8, 127.7, 126.7, 126.6, 21.3; HRMS (ESI) calcd. C$_{19}$H$_{17}$O$_2$: ([M+H]$^+$), 277.1223; found: ([M+H]$^+$), 277.1225.

3,3',5'-Trimethyl-[1,1'-biphenyl]-2-carboxamide (3ia)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (123 mg, 1.25 mmol), NMe$_4$Cl (96 mg, 0.88 mmol), 2-methylbenzamide (68 mg, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 µL, 1.5 mmol) in acetic acid (43 µL) was heated at 120 ºC for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (20% EtOAc/hexanes) to afford 3,3',5'-trimethyl-[1,1'-biphenyl]-2-carboxamide (3ia) as a white solid (75 mg, 63%). mp 179–181 ºC; Rf 0.2 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl$_3$) δ 7.30 (t, J = 7.6 Hz, 1H), 7.18 (app. t, J = 8.2 Hz, 2H), 7.08 (s, 2H), 6.99 (s, 1H), 5.73 (bs, 1H), 5.30 (bs, 1H), 2.45 (s, 3H), 2.33 (s, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 172.6, 140.8, 139.6, 138.2, 135.8, 135.6, 129.5, 129.5, 129.2, 127.6, 126.7, 20.9, 19.2; HRMS (ESI) calcd. C$_{16}$H$_{18}$NO: ([M+H]$^+$), 240.1383; found: ([M+H]$^+$), 240.1387.

3-Methyl-[1,1'-biphenyl]-2-carboxamide (3ib)
A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (110 mg, 1.13 mmol), NMe$_4$Cl (69 mg, 0.63 mmol), 2-methylbenzamide (68 mg, 0.50 mmol) and iodo benzene (167 µL, 1.5 mmol) in acetic acid (43 µL) was heated at 120 ºC for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (15% EtOAc/hexanes) to afford 3-methyl-[1,1'-biphenyl]-2-carboxamide (3ib) as a white solid (64 mg, 61%). Rf 0.1 (15% EtOAc/hexanes); 1H NMR (400 MHz, CDCl$_3$) δ 7.50 – 7.46 (m, 2H), 7.43 – 7.32 (m, 4H), 7.25 – 7.19 (m, 2H), 5.45 (bs, 1H), 5.21 (bs, 1H), 2.48 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 172.0, 140.4, 138.9, 135.6, 135.2, 129.3, 128.9, 128.6, 128.3, 127.5, 127.3, 19.5. These data are consistent with those previously reported.

3-Methyl-3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-carboxamide (3if)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (110 mg, 1.13 mmol), NMe$_4$Cl (69 mg, 0.63 mmol), 2-methylbenzamide (68 mg, 0.50 mmol) and 3,5-bis(trifluoromethyl)iodobenzene (266 µL, 1.5 mmol) in acetic acid (43 µL) was heated at 120 ºC for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (15% EtOAc/hexanes) to afford 3-methyl-3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-carboxamide (3if) as a white solid (132 mg, 76%). mp 171 – 173 ºC; Rf 0.1 (15% EtOAc/hexanes); 1H NMR (400 MHz, CDCl$_3$) δ 7.96 (s, 2H), 7.88 (s, 1H), 7.40 (t, $J = 7.7$ Hz, 1H), 7.32 (d, $J = 7.7$ Hz, 1H), 7.21 (d, $J = 7.7$ Hz, 1H), 5.57 (bs, 1H), 5.36 (bs, 1H), 2.49 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 171.1, 142.3, 136.0, 135.9, 135.5, 131.64 (q, $J = 33.4$ Hz), 130.7, 129.4, 128.9, 127.2, 123.2 (q, $J = 272.7$ Hz), 121.4 (dt, $J = 7.6$, 3.7 Hz), 19.4; HRMS (ESI) calcd. C$_{16}$H$_{12}$F$_6$N: ([M+H]$^+$), 348.0818; found: ([M+H]$^+$), 348.0822.

4'-Methoxy-[1,1'-biphenyl]-2-carboxamide (3jd)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (110 mg, 1.13 mmol), NMe$_4$Cl (69 mg, 0.63 mmol), benzamide (61 mg, 0.50 mmol) and 4-iodoanisole (351 mg, 1.5 mmol) in acetic acid (43 µL) was heated at 120 ºC for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (3% MeOH/CH$_2$Cl$_2$) to afford 4'-methoxy-[1,1'-biphenyl]-2-carboxamide (3jd) as a white solid (64 mg, 56%). mp 116 – 118 ºC; Rf 0.4 (10%
MeOH/CH$_2$Cl$_2$; 1H NMR (400 MHz, CDCl$_3$) δ 7.71 (dd, J = 7.5, 1.2 Hz, 1H), 7.45 (td, J = 7.5, 4.4 Hz, 1H), 7.40 – 7.30 (m, 4H), 6.97 – 6.90 (m, 2H), 6.16 (bs, 1H), 5.40 (bs, 1H), 3.82 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 171.7, 159.4, 139.4, 134.3, 132.4, 130.3, 130.3, 129.9, 128.9, 127.1, 114.1, 55.2. These data are consistent with those previously reported.4

1-(2'-(Pyridin-2-yl)-[1,1'-biphenyl]-4-yl)ethanone (3kg)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (123 mg, 1.25 mmol), NMe$_4$Cl (96 mg, 0.88 mmol), 2-phenylpyridine (72 μL, 0.50 mmol) and 4'-iodoacetophenone (369 mg, 1.5 mmol) in acetic acid (43 μL) was heated at 140 °C for 24 h. Then, the reaction was cooled down, KOAc (74 mg, 0.75 mmol) and NMe$_4$Cl (82 mg, 0.75 mmol) were added and the mixture stirred at 140 °C for 28 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (from CH$_2$Cl$_2$ to 40% EtOAc/CH$_2$Cl$_2$) to afford 1-(2'-(pyridin-2-yl)-[1,1'-biphenyl]-4-yl)ethanone (3kg) as a white solid (69 mg, 51%). Rf 0.4 (20% EtOAc/CH$_2$Cl$_2$); 1H NMR (400 MHz, CDCl$_3$) δ 8.60 (d, J = 4.9 Hz, 1H), 7.83 (d, J = 8.2 Hz, 2H), 7.72 – 7.67 (m, 1H), 7.54 – 7.39 (m, 4H), 7.25 (d, J = 8.2 Hz, 2H), 7.12 (dd, J = 7.5, 4.9 Hz, 1H), 6.93 (d, J = 7.5 Hz, 1H), 2.58 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 197.8, 158.9, 149.5, 146.4, 139.6, 139.5, 135.5, 135.3, 130.6, 130.3, 129.9, 128.9, 128.6, 128.3, 128.1, 125.2, 121.6, 26.6. These data are consistent with those previously reported.5

1-(4-(Benzo[h]quinolin-10-yl)phenyl)ethanone (3lg)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (110 mg, 1.13 mmol), NMe$_4$Cl (69 mg, 0.63 mmol), 7,8-benzoquinoline (90 mg, 0.50 mmol) and 4'-iodoacetophenone (369 mg, 1.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 89 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (from CH$_2$Cl$_2$ to 10% EtOAc/CH$_2$Cl$_2$) to afford 1-(4-(benzo[h]quinolin-10-yl)phenyl)ethanone (3lg) as a pale orange solid (119 mg, 80%). Rf 0.2 (CH$_2$Cl$_2$); 1H NMR (400 MHz, CDCl$_3$) δ 8.39 (dd, J = 4.3, 1.8 Hz, 1H), 8.09 (dd, J = 8.0, 1.8 Hz, 1H), 8.04 – 7.99 (m, 2H), 7.96 (dd, J = 8.0, 1.2 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.74 – 7.66 (m, 2H), 7.50 (dd, J = 7.3, 1.2 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.33
(dd, J = 8.0, 4.3 Hz, 1H), 2.70 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 198.2, 151.9, 146.8, 146.3, 140.4, 135.3, 134.9, 134.6, 130.9, 128.9, 128.7, 128.5, 128.2, 127.6, 127.2, 127.0, 126.1, 121.2, 26.6. These data are consistent with those previously reported.5

2-(3,5-Dimethylphenyl)-1-methyl-^{1}H-indole (3ma)

![Image of 2-(3,5-Dimethylphenyl)-1-methyl-^{1}H-indole](image)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (110 mg, 1.13 mmol), NMe$_4$Cl (69 mg, 0.63 mmol), 1-methylindole (66 mg, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 μL, 1.5 mmol) in dry DMF (0.5 M) was heated at 80 °C for 22 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite$^®$ with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (from 1% to 10% CH$_2$Cl$_2$/hexane) to afford 2-(3,5-dimethylphenyl)-1-methyl-^{1}H-indole (3ma) as a colourless oil (72 mg, 61%). R$_f$ 0.3 (10% CH$_2$Cl$_2$/hexane); 1H NMR (400 MHz, CDCl$_3$) δ 7.61 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 7.9 Hz, 1H), 7.22 (td, J = 7.9, 1.4 Hz, 1H), 7.15 – 7.09 (m, 3H), 7.03 (s, 1H), 6.52 (s, 1H), 3.72 (s, 3H), 2.38 (s, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 141.8, 138.3, 138.0, 132.7, 129.5, 128.0, 127.2, 121.4, 120.4, 119.7, 109.5, 101.4, 31.1, 21.3; HRMS (ESI) calcd. C$_{17}$H$_{18}$N: ([M+H]$^+$), 236.1434; found: ([M+H]$^+$), 236.1435.

1-(4-(5-Chlorothiophen-2-yl)phenyl)ethanone (3ng)

![Image of 1-(4-(5-Chlorothiophen-2-yl)phenyl)ethanone](image)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (123 mg, 1.25 mmol), NMe$_4$Cl (96 mg, 0.88 mmol), 4'-iodoacetophenone (123 mg, 0.50 mmol) and 2-chlorothiophene (55 μL, 0.6 mmol) in acetic acid (43 μL) was heated at 120 °C for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite$^®$ with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (15% EtOAc/hexane) to afford 1-(4-(5-chlorothiophen-2-yl)phenyl)ethanone (3ng) as a yellowish solid (60 mg, 51%). R$_f$ 0.3 (15% EtOAc/hexane); 1H NMR (400 MHz, CDCl$_3$) δ 7.99 – 7.94 (m, 2H), 7.61 – 7.57 (m, 2H), 7.20 (d, J = 3.9 Hz, 1H), 6.94 (d, J = 3.9 Hz, 1H), 2.61 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 197.1, 141.4, 137.9, 136.0, 131.0, 129.1, 127.5, 125.2, 123.8, 26.5. These data are consistent with those previously reported.6

2,3,4,5,6-Pentafluoro-3''5''-dimethyl-1,1'-biphenyl (3oa)
A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (123 mg, 1.25 mmol), NMe$_4$Cl (96 mg, 0.88 mmol), pentafluorobenzene (56 μL, 0.5 mmol) and 1-iodo-3,5-dimethylbenzene (72 μL, 0.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (petroleum ether) to afford 2,3,4,5,6-pentafluoro-3',5'-dimethyl-1,1'-biphenyl (3oa) as a white solid (86 mg, 63%). mp 82–83 °C; Rf 0.4 (hexanes); 1H NMR (400 MHz, CDCl$_3$) δ 7.10 (s, 1H), 7.02 (s, 2H), 2.38 (s, 6H); 13C NMR (101 MHz, CDCl$_3$) δ 145.6–142.7 (dm, J = 247.1 Hz), 141.7–138.7 (dm, J = 245.0 Hz), 139.3–136.3 (dm, J = 252.6 Hz), 138.3, 131.0, 127.8, 126.1, 116.3 (td, J = 17.6, 3.9 Hz), 21.2. These data are consistent with those previously reported.

2,3,4,5,6-Pentafluoro-4'-methyl-1,1'-biphenyl (3oc)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (123 mg, 1.25 mmol), NMe$_4$Cl (96 mg, 0.88 mmol), pentafluorobenzene (56 μL, 0.5 mmol) and 4-iodotoluene (109 mg, 0.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (petroleum ether) to afford 2,3,4,5,6-pentafluoro-4'-methyl-1,1'-biphenyl (3oc) as a white solid (68 mg, 53%). Rf 0.4 (hexanes); 1H NMR (400 MHz, CDCl$_3$) δ 7.31 (s, 4H), 2.42 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 146.0–143.3 (dm, J = 247.1 Hz), 141.7–139.4 (dm, J = 239.9 Hz), 139.8, 139.5–136.9 (dm, J = 237.7 Hz), 130.3, 129.8, 123.7, 116.2 (td, J = 17.3, 4.0 Hz), 20.9. These data are consistent with those previously reported.

2,3,4,5,6-Pentafluoro-4'-methoxy-1,1'-biphenyl (3od)
A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (123 mg, 1.25 mmol), NMe$_4$Cl (96 mg, 0.88 mmol), pentafluorobenzene (56 μL, 0.5 mmol) and 4-idoanisole (117 mg, 0.5 mmol) in acetic acid (43 μL) was heated at 120 ºC for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite6 with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (20% EtOAc/petroleum ether) to afford 2,3,4,5,6-pentafluoro-4'-methoxy-1,1'-biphenyl (3od) as a white solid (62 mg, 45%).

8-(3,5-Dimethylbenzyl)quinoline (3pa)

![3pa](image)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (61 mg, 0.63 mmol), NMe$_4$Cl (69 mg, 0.63 mmol), 8-methylquinoline (67 μL, 0.50 mmol) and 1-iodo-3,5-dimethylbenzene (216 μL, 1.5 mmol) in acetic acid (43 μL) was heated at 120 ºC for 19 h. Then, the reaction was cooled down, KOAc (25 mg, 0.25 mmol) and NMe$_4$Cl (27 mg, 0.25 mmol) were added and the mixture stirred at 120 ºC for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite6 with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (45% CH$_2$Cl$_2$/hexanes) to afford 8-(3,5-dimethylbenzyl)quinoline (3pa) as a white solid (89 mg, 72%). mp 84–85 ºC; Rf 0.1 (40% CH$_2$Cl$_2$/hexanes); 1H NMR (400 MHz, CDCl$_3$) δ 8.98 (dd, $J = 4.2, 1.8$ Hz, 1H), 8.15 (dd, $J = 8.2, 1.8$ Hz, 1H), 7.68 (dd, $J = 7.3, 2.2$ Hz, 1H), 7.48 – 7.39 (m, 3H), 6.94 (s, 2H), 6.84 (s, 1H), 4.62 (s, 2H), 2.27 (s, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 149.9, 147.2, 141.5, 140.8, 138.1, 136.6, 129.8, 128.7, 127.9, 127.5, 126.6, 126.4, 121.2, 36.2, 20.9; HRMS (ESI) calcd. C$_{18}$H$_{18}$N: ([M+H]$^+$), 248.1434; found: ([M+H]$^+$), 248.1433.

8-(4-Methoxybenzyl)quinoline (3pd)

![3pd](image)

A mixture of Pd(OAc)$_2$ (5.6 mg, 0.03 mmol), KOAc (61 mg, 0.63 mmol), NMe$_4$Cl (69 mg, 0.63 mmol), 8-methylquinoline (67 μL, 0.50 mmol) and 4-idoanisole (351 mg, 1.5 mmol) in acetic acid (43 μL) was heated at 120 ºC for 19 h. Then, the reaction was
cooled down, KOAc (25 mg, 0.25 mmol) and NMe₄Cl (27 mg, 0.25 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (10% EtOAc/hexanes) to afford 8-(4-methoxybenzyl)quinoline (3pd) as a colourless oil (77 mg, 62%). Rf 0.2 (10% EtOAc/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.97 (dd, J = 4.2, 1.8 Hz, 1H), 8.15 (dd, J = 8.2, 1.8 Hz, 1H), 7.68 (dd, J = 7.4, 2.2 Hz, 1H), 7.47 – 7.39 (m, 3H), 7.26 – 7.22 (m, 2H), 6.86 – 6.81 (m, 2H), 4.63 (s, 2H), 3.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.8, 149.4, 146.7, 140.6, 136.2, 133.4, 130.2, 129.3, 128.4, 126.3, 126.1, 120.9, 113.8, 55.2, 35.9. These data are consistent with those previously reported.

1-(4-(Quinolin-8-ylmethyl)phenyl)ethanone (3pq)

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (61 mg, 0.63 mmol), NMe₄Cl (69 mg, 0.63 mmol), 8-methylquinoline (67 μL, 0.50 mmol) and 4'-iodoacetophenone (369 mg, 1.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 19 h. Then, the reaction was cooled down, KOAc (25 mg, 0.25 mmol) and NMe₄Cl (27 mg, 0.25 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (8% EtOAc/hexanes) to afford 1-(4-(quinolin-8-ylmethyl)phenyl)ethanone (3pq) as a white solid (79 mg, 61%). mp 93–94 °C; Rf 0.2 (10% EtOAc/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.95 (dd, J = 4.2, 1.8 Hz, 1H), 8.16 (dd, J = 8.3, 1.8 Hz, 1H), 7.89 – 7.84 (m, 2H), 7.72 (m, 1H), 7.48 – 7.38 (m, 5H), 4.73 (s, 2H), 2.55 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 149.6, 147.3, 146.6, 139.1, 136.2, 135.0, 129.5, 129.3, 128.5, 128.4, 126.7, 126.3, 121.1, 36.9, 26.5; HRMS (ESI) calcd. C₁₈H₁₆NO: ([M+H]+), 262.1226; found: ([M+H]+), 262.1224.

8-(4-(Trifluoromethyl)benzyl)quinoline (3ph)

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (61 mg, 0.63 mmol), NMe₄Cl (69 mg, 0.63 mmol), 8-methylquinoline (67 μL, 0.50 mmol) and 4-iodobenzotrifluoride (220 μL, 1.5 mmol) in acetic acid (43 μL) was heated at 120 °C for 19 h. Then, the
reaction was cooled down, KOAc (25 mg, 0.25 mmol) and NMe₄Cl (27 mg, 0.25 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (32% CH₂Cl₂/hexanes) to afford 8-(trifluoromethyl)benzylquinoline (3ph) as a white solid (98 mg, 68%). mp 50–52 °C; Rf 0.2 (40% CH₂Cl₂/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.96 (dd, J = 4.2, 1.8 Hz, 1H), 8.16 (dd, J = 8.3, 1.8 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.53 – 7.41 (m, 7H), 4.73 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 147.0, 146.1, 139.5, 136.7, 129.9, 129.8, 128.8, 128.5 (q, J = 32.2 Hz), 127.1, 126.7, 125.5 (q, J = 3.8 Hz), 124.7 (d, J = 271.8 Hz), 121.4, 36.5. These data are consistent with those previously reported.⁵

8-(4-Bromobenzyl)quinoline (3pi)

![8-(4-Bromobenzyl)quinoline](image)

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (61 mg, 0.63 mmol), NMe₄Cl (69 mg, 0.63 mmol), 8-methylquinoline (67 µL, 0.50 mmol) and 1-bromo-4-iodobenzene (424 mg, 1.5 mmol) in acetic acid (43 µL) was heated at 120 °C for 19 h. Then, the reaction was cooled down, KOAc (25 mg, 0.25 mmol) and NMe₄Cl (27 mg, 0.25 mmol) were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (37% CH₂Cl₂/hexanes) to afford 8-(4-bromobenzyl)quinoline (3pi) as a white solid (99 mg, 66%). mp 49–50 °C; Rf 0.1 (10% CH₂Cl₂/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.95 (dd, J = 4.2, 1.8 Hz, 1H), 8.15 (dd, J = 8.3, 1.8 Hz, 1H), 7.70 (dd, J = 7.2, 2.4 Hz, 1H), 7.48 – 7.35 (m, 5H), 7.22 – 7.17 (m, 2H), 4.63 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 147.0, 140.8, 139.9, 136.6, 131.6, 131.3, 129.7, 128.7, 126.8, 126.6, 121.3, 119.9, 36.0. These data are consistent with those previously reported.⁵

Methyl 3-(quinolin-8-ylmethyl)benzoate (3pj)

![Methyl 3-(quinolin-8-ylmethyl)benzoate](image)

A mixture of Pd(OAc)₂ (5.6 mg, 0.03 mmol), KOAc (61 mg, 0.63 mmol), NMe₄Cl (69 mg, 0.63 mmol), 8-methylquinoline (67 µL, 0.50 mmol) and methyl 3-iodobenzoate (393 mg, 1.5 mmol) in acetic acid (43 µL) was heated at 120 °C for 19 h. Then, the reaction was cooled down, KOAc (25 mg, 0.25 mmol) and NMe₄Cl (27 mg, 0.25 mmol)
were added and the mixture stirred at 120 °C for 24 h. After this time, the reaction mixture was cooled down, filtered through a plug of Celite® with EtOAc (10 mL) and the filtrate evaporated to dryness. The residue was purified by flash column chromatography (7% EtOAc/hexanes) to afford methyl 3-(quinolin-8-ylmethyl)benzoate (3pj) as a colourless oil (82 mg, 59%). Rf 0.2 (10% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 8.96 (dd, J = 4.2, 1.8 Hz, 1H), 8.15 (dd, J = 8.3, 1.8 Hz, 1H), 8.03 (ddd, J = 2.6, 1.2, 0.6 Hz, 1H), 7.87 (ddd, J = 7.8, 1.8, 1.2 Hz, 1H), 7.70 (dd, J = 7.8, 2.6 Hz, 1H), 7.54 – 7.50 (m, 1H), 7.48 – 7.40 (m, 3H), 7.33 (t, J = 7.8 Hz, 1H), 4.73 (s, 2H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 167.8, 150.0, 147.0, 142.2, 139.9, 136.6, 134.3, 130.7, 128.7, 128.6, 127.5, 126.8, 126.6, 126.8, 126.6, 121.3, 51.8, 36.3; HRMS (ESI) calcd. C18H16NO2: ([M+H]+), 278.1176; found: ([M+H]+), 278.1176.

Large Scale Model Reaction

In a 5 L controlled laboratory reactor (Picture S1), a mixture of Pd(OAc)2 (7.18 g, 0.03 mol), KOAc (314.1 g, 3.2 mol), NMe4Cl (219.2 g, 2 mol), o-toluic acid (217.8 g, 1.6 mol), iodo benzene (358 mL, 3.2 mol) and acetic acid (138 mL, 2.4 mol) was heated at 120 °C and stirred for 18 h under N2 atmosphere. Then, the reaction was cooled down, KOAc (125.6 g, 1.28 mol) and NMe4Cl (140.3 g, 1.28 mol) were added and the mixture was stirred at 120 °C for 24 h. After this time, the reaction mixture was diluted with EtOAc (800 mL), quenched by addition of 2.0 M aqueous HCl (960 mL) and then filtered through a plug of Celite® with EtOAc. The phases of the filtrate were separated and the organic phase was washed with 2.0 M aqueous NaOH (2 × 1.6 L). The aqueous layers were combined, filtered through glass microfiber under vacuum and acidified to pH=1 by slow addition of HCl 37%. The resultant suspension was filtered, the solid rinsed with water and dried in the vacuum oven to afford the crude product 3-methyl-[1,1'-biphenyl]-2-carboxylic acid (3cb) as an off-white solid (295.3 g, 87%). The purity was determined to be 97% by HPLC. A sample of 10 g was suspended in heptane (50 mL) and stirred at reflux temperature for 2 h. The suspension was cooled down to 20 °C over 3h, then filtered and washed with heptane (20 mL) to afford analytically pure material (8.47 g, 85%). mp 133–135 °C; 1H NMR (400 MHz, CDCl3) δ 7.43 – 7.35 (m, 6H), 7.25 – 7.20 (m, 2H), 2.46 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 175.6, 140.6, 140.2, 135.4, 132.1, 129.7, 129.2, 128.3, 128.3, 127.5, 127.4, 19.9; HRMS (ESI) calcd. C14H13O2: ([M+H]+), 213.0910; found: ([M+H]+), 213.0910. These data are consistent with those previously reported.10
Presence of NMe₄I and PdI₂ in the Reaction Medium

Following the general procedure, reaction mixtures were filtered during the reaction work-up. The analysis of the filtration cake by NMR and IR revealed the presence of TMAI. ¹H NMR (400 MHz, DMSO) δ 3.12 (s, 12H); ¹³C NMR (101 MHz, DMSO) δ 54.4, 54.4, 54.3. IR (neat) ν 3010, 1481, 1399, 941 cm⁻¹. These data are consistent with those previously reported¹¹ and in agreement of those obtained using commercial TMAI.

To ascertain the presence of PdI₂ as the inactivated form of the catalyst, we performed a qualitative test following a procedure for the preparation of trans-diiodobis(triphenylphosphine)palladium(II).¹² As described, mixing a pure sample of PdI₂ with a saturated solution of PPh₃ in acetonitrile led to the formation of the yellowish palladium complex (Figure S1). The analogous experiment with the reaction crude (entry 2, Table 1) gave the same change of colour. This observation indicated that PdI₂ was probably present in the reaction mixture; therefore suggesting that the reaction stopped after two catalytic cycles because of the formation of unreactive PdI₂.
The solubility of ammonium iodide, tetramethylammonium iodide (TMAI), tetraethylammonium iodide (TEAI) and tetrabutylammonium iodide (TBAI) in acetic acid was determined following the next procedure. Saturated suspensions of the ammonium salts in acetic acid were prepared by addition of 1-8 g of the salt, as required, to 5 mL of acetic acid and subsequent sonication of the sample at room temperature for 10 min. The suspensions were filtered, the filtrate evaporated to dryness and the remaining residue weighed. The results are summarized in Table S2.

<table>
<thead>
<tr>
<th>Ammonium salt</th>
<th>Solubility in acetic acid at RT (mg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄I</td>
<td>4.7</td>
</tr>
<tr>
<td>NMe₄I</td>
<td>0.25</td>
</tr>
<tr>
<td>NEt₄I</td>
<td>6.5</td>
</tr>
<tr>
<td>NBu₄I</td>
<td>647</td>
</tr>
</tbody>
</table>

Table S2.

References:
Copies of 1H NMR and 13C NMR Spectra