Supplementary Information for

Ether Solvent-induced Chirality Inversion of Helical Poly(quinoxaline-2,3-diyl)s Containing L-Lactic Acid Derived Side Chains

Yuuya Nagata,¹ Takuma Kuroda,¹ Keisuke Takagi,¹ and Michinori Suginome*,¹,²

¹Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
²CREST, Japan Science and Technology Agency (JST), Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

E-mail: suginome@sbchem.kyoto-u.ac.jp

Contents
1. General .. 2
2. Experimental Procedures and Spectral Data for New Compounds .. 3
3. Use of Polymer 5(1000/50) as a Chiral Ligand in the Asymmetric Suzuki-Miyaura coupling (SMC) Reaction ... 27
4. Summary of CD and UV Measurements of Polymer Solutions .. 31
5. References .. 32
1. General

All reactions were carried out under an atmosphere of nitrogen with magnetic stirring. 1H and 13C NMR spectra were recorded on a Varian 400-MR spectrometer at ambient temperature. 1H NMR data are reported as follows: chemical shift in ppm downfield from tetramethylsilane (δ scale), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broad), coupling constant (Hz), and integration. 13C NMR chemical shifts are reported in ppm downfield from tetramethylsilane (δ scale). All 13C NMR spectra were obtained with complete proton decoupling. IR spectra were obtained using a Shimadzu FTIR-8400 Fourier transform infrared (FT-IR) spectrometer equipped with PIKE MIRacle attenuated total reflection (MIR-ATR) attachment. The GPC analysis was carried out with TSKgel GMHXL (CHCl$_3$, polystyrene standards). Preparative GPC was performed on JAI LC-908 equipped with JAIGEL-1H and -2H columns in a series (CHCl$_3$). UV spectra were recorded on a JASCO V-500 spectrometer equipped with a JASCO ETC-505T temperature/stirring controller at 20 °C. CD spectra were recorded on a JASCO J-750 spectrometer equipped with a JASCO PTC-423L temperature/stirring controller at 20 °C. The chiral HPLC analysis was carried out on TOSOH 8020 series equipped with CHIRALCEL® OZ-H (hexane and 2-propanol). Flash chromatography was performed using a Biotage Isolera One flash purification system with silica gel flash cartridges.

Tetrahydrofuran (THF) and toluene were dried and deoxygenized using an alumina/catalyst column system (Glass Contour Co.). 1,2-Bis(bromomethyl)-3,6-dimethyl-4,5-dinitrobenzene, 1 acetic formic anhydride (AFA), 2 o-TolNiCl(PMe$_3$)$_3$, 3 (2',3'-diisocyanato-4'-methyl-[1,1'-biphenyl]-2-yl)diphenylphosphine sulfide S1, 4 and dimethyl (1-bromonaphthalen-2-yl)phosphonate 12 were prepared according to the reported procedure. Other chemical reagents were purchased from the commercial sources. Primary alcohols (1-Propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, and 1-decanol), BF$_3$·Et$_2$O, 1,2-dimethoxyethane (1,2-DME), and tert-butyl methyl ether (MTBE) were distilled over CaH$_2$ and degassed prior to use. Triethylamine (Et$_3$N) was distilled over KOH and degassed. Phosphoryl chloride (POCl$_3$) was distilled and degassed. K$_2$PO$_4$ was dried under reduced pressure at 150 °C for 5 h before use. Other chemicals were used without further purification.
2. Experimental Procedures and Spectral Data for New Compounds

Synthesis of M1-NO$_2$: To a mixture of 1,2-Bis(bromomethyl)-3,6-dimethyl-4,5-dinitrobenzene (1.37 g, 3.58 mol) and Ag$_2$O (8.29 g, 35.8 mol) was added a mixture of Et$_2$O (36 mL) and L-methyl lactate (1.37 mL, 14.3 mol) at room temperature. The mixture was stirred for 24 h at 40 °C. The reaction mixture was filtered. The filtrate was concentrated and dried under vacuum. The mixture was purified with silica gel flash column chromatography (hexane/AcOEt = 70/30 to 50/50) to give M1-NO$_2$ as pale yellow solid (499 mg, 33%). 1H NMR (CDCl$_3$) δ 4.93 (2H, d, $J = 10.6$ Hz), 4.55 (2H, d, $J = 10.3$ Hz), 4.16 (2H, q, $J = 13.7$ Hz), 3.79 (6H, s), 2.43 (6H, s), 1.44 (6H, d, $J = 6.8$ Hz); 13C NMR (CDCl$_3$) δ 173.2, 144.3, 140.4, 130.8, 75.0, 65.3, 52.2, 18.9, 14.7; IR (ATR, neat) 1738, 1531, 1454, 1373, 1302, 1261, 1146, 1113, 1067, 1016, 972, 916, 868, 785, 754 cm$^{-1}$; HRMS (APCI) m/z calcd for C$_{18}$H$_{25}$N$_2$O$_{10}$ ([M+NH$_4^+$]): 429.1509, found: 429.1499; $[\alpha]^{26.6}_{D} = -29.1$ (c 7.97, CHCl$_3$).

Scheme S1. Synthesis of M1-NO$_2$

Synthesis of M1-NC: A suspension of M1-NO$_2$ (463 mg, 1.08 mmol), HCO$_2$NH$_4$ (449 mg, 7.13 mmol), and 10 wt% Pd/C (115 mg, 108 μmol) in EtOH (11 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (309 mg, 3.51 mmol) was added to the diamine dissolved in CH$_2$Cl$_2$ (8.8 mL). After stirring for 14 h, removal of volatiles under reduced pressure gave a diformate compound as white solid. POCl$_3$ (226 μL, 372 mg, 2.42 mmol) was added to a solution of diformate in Et$_3$N (1.1 mL) and CH$_2$Cl$_2$ (12.1 mL) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was washed with saturated NaHCO$_3$ aq (30 mL). The organic layer was dried over Na$_2$SO$_4$, filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (CH$_2$Cl$_2$/MeOH = 98/2) to give M1-NC as white solid (198 mg, 47%). 1H NMR (C$_6$D$_6$) δ 4.87 (2H, d, $J = 10.6$ Hz), 4.49 (2H, d, $J = 10.3$ Hz), 4.13 (2H, q, $J = 14.0$ Hz), 3.78 (6H, s), 2.53 (6H, s), 1.44 (6H, d, $J = 6.8$ Hz).
1.42 (6H, d, J = 7.1 Hz); 13C NMR (CD$_2$Cl$_2$) δ 173.1, 137.6, 134.5, 124.2, 74.7, 65.4, 52.0, 18.7, 15.6; IR (ATR, neat) 2118, 1736, 1454, 1261, 1229, 1144, 1113, 1016 cm$^{-1}$; HRMS (EI$^+$) m/z calcd for C$_{20}$H$_{24}$N$_2$O$_6$ (M$^+$): 388.1634, found: 388.1640; [α]$^{27.9}_D$ −97.1 (c 9.49, CH$_2$Cl$_2$).

Scheme S2. Synthesis of M1-NC

Synthesis of M2-NO$_2$: To a mixture of 1,2-Bis(bromomethyl)-3,6-dimethyl-4,5-dinitrolbenzene (9.97 g, 26.1 mol) and Ag$_2$O (60.5 g, 261 mol) was added a mixture of Et$_2$O (261 mL) and L-ethyl lactate (12.3 g, 104 mol) at room temperature. The mixture was stirred for 24 h at 40 °C. The reaction mixture was filtered. The filtrate was concentrated and dried under vacuum. The mixture was purified with silica gel flash column chromatography (hexane/AcOEt = 80/20) to give M2-NO$_2$ as pale yellow solid (6.12 g, 51%). 1H NMR (CDCl$_3$) δ 4.93 (2H, d, J = 10.6 Hz), 4.55 (2H, d, J = 10.3 Hz), 4.27–4.21 (4H, m), 4.13 (2H, q, J = 6.8 Hz), 2.45 (6H, s), 1.44 (6H, d, J = 7.2 Hz), 1.32 (6H, t, J = 7.1 Hz); 13C NMR (CDCl$_3$) 167.6, 139.1, 135.3, 125.7, 69.9, 60.1, 56.1, 13.8, 9.5, 9.2; IR (ATR, neat) 2984, 1738, 1541, 1447, 1366, 1300, 1265, 1202, 1140, 1111, 1067, 1018, 920, 860, 783, 754 cm$^{-1}$; HRMS (EI$^+$) m/z calcd for C$_{20}$H$_{29}$N$_2$O$_{10}$ (M$^+$): 457.1822, found: 457.1780; [α]$^{23.6}_D$ −40.6 (c 6.80, CHCl$_3$).

Scheme S3. Synthesis of M2-NO$_2$
Synthesis of M2-NC: A suspension of M2-NO2 (470 mg, 1.20 mmol), HCO2NH4 (499 mg, 7.92 mmol), and 10 wt% Pd/C (127 mg, 120 μmol) in EtOH (12 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (452 mg, 5.14 mmol) was added to the diamine dissolved in CH2Cl2 (12 mL). After stirring for 14 h, removal of volatiles under reduced pressure gave a diformate compound as white solid. POCl3 (280 μL, 462 mg, 3.01 mmol) was added to a solution of diformate in Et3N (1.40 mL) and CH2Cl2 (15 mL) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was washed with saturated NaHCO3 aq (30 mL). The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (CH2Cl2/MeOH = 98/2) to give M2-NC as white solid (147 mg, 29%).

\[^1H \text{ NMR (C}_6\text{D}_6) \delta 4.73 (2H, d, J = 0.0 \text{ Hz}), 4.12 (2H, d, J = 10.6 \text{ Hz}), 4.02–3.97 (4H, m), 3.89 (2H, q, J = 6.8 \text{ Hz}), 2.14 (6H, s), 1.29 (6H, d, J = 6.8 \text{ Hz}), 0.98 (6H, t, J = 7.1 \text{ Hz}); \]
\[^13C \text{ NMR (C}_6\text{D}_6) \delta 175.6, 172.6, 137.7, 134.3, 124.4, 75.0, 65.6, 60.8, 18.8, 15.3, 14.2; \]
IR (ATR, neat) 2116, 1734, 1371, 1211, 1142, 1111, 1074, 918, 860 cm\(^{-1}\); HRMS (NSI) m/z calcd for C22H29N2O10 ([M+H]+): 417.2026, found: 417.2056; [\(\alpha\)]\(^{25.5}\)_D −55.9 (c 6.72, CH2Cl2).

Scheme S4. Synthesis of M2-NC

Synthesis of M3-NO2: To a solution of M2-NO2 (533 mg, 1.24 mmol) in toluene (25 mL) were added 1-propanol (25 mL) and BF3·Et2O (7.42 mL). The mixture was stirred for 24 h at 100 °C. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. To the mixture was added CH2Cl2 (100 mL) and saturated NaHCO3 aq (100 mL) to quench the reaction. The organic phase was washed with water (100 mL × 2) and brine (100 mL) and dried over Na2SO4. The residue was purified with silica gel column chromatography (hexane/AcOEt = 80/20) to give M3-NO2 as pale yellow solid (585 mg, 97%).

\[^1H \text{ NMR (CDCl}_3) \delta 4.93 (2H, d, J = 10.6 \text{ Hz}), 4.56 (2H, d, J = 10.6 \text{ Hz}), 4.19–4.09 (6H, m), 2.45 (6H, s), 1.75–1.66 (4H, m), 1.45 (6H, d, J = 6.9 \text{ Hz}), 0.97 (6H, t, J = 7.4 \text{ Hz}); \]
\[^13C \text{ NMR (CDCl}_3) 172.8, 140.5, 130.8, 75.1, 66.8, 65.3, 22.1, 19.0, 14.7, 10.5; \]
IR (ATR,
neat) 2970, 2881, 1740, 1541, 1456, 1416, 1362, 1302, 1269, 1200, 1140, 1111, 1065, 1016, 974, 943, 910, 862, 783, 756, 721, 667 cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{22}\)H\(_{36}\)N\(_3\)O\(_{10}\) ([M+NH\(_4^+\)]: 502.2401, found: 502.2383; \([\alpha]\)\(^{27}\)\(_D\) −36.1 (\(c\) 8.36, CHCl\(_3\)).

Scheme S5. Synthesis of M\(_3\)-NO\(_2\)

Synthesis of M\(_3\)-NC: A suspension of M\(_3\)-NO\(_2\) (554 mg, 1.14 mmol), HCO\(_2\)NH\(_4\) (476 mg, 7.55 mmol), and 10 wt% Pd/C (122 mg, 114 μmol) in EtOH (11 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (403 mg, 4.58 mmol) was added to the diamine dissolved in CH\(_2\)Cl\(_2\) (11 mL). After stirring for 14 h, removal of volatiles under reduced pressure gave a diformate compound as white solid. POCl\(_3\) (285 μL, 468 mg, 3.05 mmol) was added to a solution of diformate in Et\(_3\)N (1.41 mL) and CH\(_2\)Cl\(_2\) (15 mL) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was washed with saturated NaHCO\(_3\) aq (30 mL). The organic layer was dried over Na\(_2\)SO\(_4\), filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (hexane/Et\(_2\)O = 75/25 to 25/75) to give M\(_3\)-NC as white solid (252 mg, 50%). \(^1\)H NMR (C\(_6\)D\(_6\)) \(\delta\) 4.77 (2H, d, \(J = 10.6\) Hz), 4.16 (2H, d, \(J = 10.6\) Hz), 3.98 (4H, t, \(J = 6.7\) Hz), 3.92 (2H, q, \(J = 6.9\) Hz), 2.16 (6H, s), 1.48–1.39 (4H, m), 1.31 (6H, d, \(J = 6.9\) Hz), 0.75 (6H, t, \(J = 7.4\) Hz); \(^{13}\)C NMR (C\(_6\)D\(_6\)) \(\delta\) 175.6, 172.8, 137.8, 134.3, 75.0, 66.4, 65.6, 22.3, 18.9, 15.4, 10.4; IR (ATR, neat) 3744, 3647, 2120, 1747, 1732, 1653, 1558, 1506, 1456, 1204, 1142, 1059, 941 cm\(^{-1}\); HRMS (ESI) \(m/z\) calcd for C\(_{24}\)H\(_{36}\)N\(_3\)O\(_6\) ([M+NH\(_4^+\)]: 462.2604, found: 462.2589; \([\alpha]\)\(^{27}\)\(_D\) −42.8 (\(c\) 9.12, CH\(_2\)Cl\(_2\)).
Synthesis of M4-NO$_2$: To a solution of M2-NO$_2$ (2.17 g, 4.76 mmol) in toluene (95 mL) were added 1-butanol (95 mL) and BF$_3$·Et$_2$O (28.6 mL). The mixture was stirred for 24 h at 100 °C. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. To the mixture was added CH$_2$Cl$_2$ (200 mL) and saturated NaHCO$_3$ aq (200 mL) to quench the reaction. The organic phase was washed with water (200 mL × 2) and brine (200 mL) and dried over Na$_2$SO$_4$. The residue was purified with silica gel column chromatography (hexane/AcOEt = 80/20) to give M4-NO$_2$ as yellow oil (2.04 g, 84%). 1H NMR (CDCl$_3$, δ 4.93 (2H, d, 10.6 Hz), 4.55 (2H, d, 10.6 Hz), 4.23–4.10 (6H, m), 2.44 (6H, s), 1.67–1.62 (4H, m), 1.45–1.37 (10H, m), 0.95 (6H, t, 7.3 Hz); 13C NMR (CDCl$_3$) 172.8, 144.3, 140.5, 130.8, 75.1, 65.3, 65.1, 30.8, 19.2, 18.9, 14.7, 13.8; IR (ATR, neat) 2961, 2874, 1740, 1543, 1456, 1364, 1302, 1271, 1200, 1140, 1113, 1067, 1018, 939, 860, 783, 754, 719, 667 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{24}$H$_{40}$N$_3$O$_{10}$ ([M+NH$_4$]$^+$): 530.2714, found: 530.2709; [α]$^{27.4}_D$ = -46.3 (c 10.5, CHCl$_3$).

Synthesis of M4-NC: A suspension of M4-NO$_2$ (2.04 g, 3.98 mmol), HCO$_2$NH$_4$ (1.66 g, 26.2 mmol), and 10 wt% Pd/C (424 mg, 398 μmol) in EtOH (40 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (1.40 g, 15.9 mmol) was added to the diamine dissolved in CH$_2$Cl$_2$ (40 mL). After stirring for 14 h, removal of volatiles under reduced pressure gave a diformate compound as white solid. POCl$_3$ (1.03 mL, 1.68 g, 11.0 mmol)
was added to a solution of diformate in Et₃N (5.10 mL) and CH₂Cl₂ (55 mL) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was washed with saturated NaHCO₃ aq (100 mL). The organic layer was washed over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (hexane/Et₂O = 75/25 to 25/75) to give M4-NC as pale yellow oil (936 mg, 50%). ¹H NMR (C₆D₆) δ 4.79 (2H, d, J = 10.6 Hz), 4.17 (2H, d, J = 10.6 Hz), 4.05 (4H, t, J = 6.7 Hz), 3.93 (2H, q, J = 6.9 Hz), 2.16 (6H, s), 1.45–1.39 (4H, m), 1.31 (6H, d, J = 6.8 Hz), 1.23–1.17 (6H, m), 0.80 (6H, t, J = 7.4 Hz); ¹³C NMR (C₆D₆) δ 175.7, 172.6, 137.7, 134.3, 75.0, 65.6, 64.7, 30.9, 19.3, 18.8, 15.3, 13.7; IR (ATR, neat) 2961, 2874, 2116, 1742, 1456, 1385, 1306, 1269, 1198, 1140, 1113, 1059, 1016, 962, 939, 841, 812, 752, 640 cm⁻¹; HRMS (ESI) m/z calcd for C₂₆H₄₀N₃O₆ ([M+NH₄]⁺): 490.2917, found: 490.2902; [α]²⁶.⁸ D −49.9 (c 11.3, CH₂Cl₂).

Scheme S8. Synthesis of M4-NC

Synthesis of M5-NO₂: To a solution of M2-NO₂ (1.23 g, 2.70 mmol) in toluene (54 mL) were added 1-pentanol (54 mL) and BF₃·Et₂O (16.3 mL). The mixture was stirred for 24 h at 100 °C. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. To the mixture was added CH₂Cl₂ (100 mL) and saturated NaHCO₃ aq (100 mL) to quench the reaction. The organic phase was washed with water (100 mL × 2) and brine (100 mL) and dried over Na₂SO₄. The mixture was heated at 70 °C and dried under vacuum to remove an alcohol. The residue was purified with silica gel column chromatography (hexane/AcOEt = 85/15) to give M5-NO₂ as yellow oil (1.36 g, 93%). ¹H NMR (CDCl₃) δ 4.93 (2H, d, J = 10.3 Hz), 4.55 (2H, d, J = 10.6 Hz), 4.21–4.10 (6H, m), 2.45 (6H, s), 1.71–1.64 (4H, m), 1.44 (6H, d, J = 6.9 Hz), 1.37–1.33 (8H, m), 0.92 (6H, t, J = 7.0 Hz); ¹³C NMR (CDCl₃) δ 172.8, 140.5, 130.8, 75.1, 65.4, 65.3, 28.4, 28.2, 22.4, 19.0, 14.7, 14.1; IR (ATR, neat) 3854, 3649, 2957, 1740, 1543, 1456, 1362, 1198, 1140, 1113, 1068, 1016, 964, 918, 860, 783 cm⁻¹; HRMS (ESI) m/z calcd for C₂₆H₄₄N₅O₁₀ ([M+NH₄]⁺): 558.3027, found: 558.3013; [α]²⁸.¹ D −39.3 (c 9.60, CHCl₃).

S8
Scheme S9. Synthesis of M5-NO₂

Synthesis of M5-NC: A suspension of M5-NO₂ (1.33 g, 2.45 mmol), HCO₂NH₄ (1.02 g, 16.2 mmol), and 10 wt% Pd/C (261 mg, 245 μmol) in EtOH (25 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (864 mg, 9.80 mmol) was added to the diamine dissolved in CH₂Cl₂ (25 mL). After stirring for 14 h, removal of volatiles under reduced pressure gave a diformate compound as white solid. POCl₃ (671 μL, 1.10 g, 7.20 mmol) was added to a solution of diformate in Et₃N (3.34 mL) and CH₂Cl₂ (36 mL) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was washed with saturated NaHCO₃ aq (50 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (hexane/Et₂O = 75/25) to give M5-NC as pale yellow oil (656 mg, 54%).

1H NMR (C₆D₆) δ 4.80 (2H, d, J = 10.3 Hz), 4.19 (2H, d, J = 10.6 Hz), 4.07 (4H, t, J = 6.7 Hz), 3.95 (2H, q, J = 7.2 Hz), 2.18 (6H, s), 1.50–1.46 (4H, m), 1.33 (6H, d, J = 6.8 Hz), 1.19–1.17 (8H, m), 0.83 (6H, t, J = 6.8 Hz); **13C NMR** (C₆D₆) δ 175.6, 172.7, 137.8, 134.3, 128.3, 75.0, 65.6, 65.0, 28.7, 28.3, 22.6, 18.9, 15.4, 14.1; **IR** (ATR, neat) 3854, 3736, 3676, 3649, 2928, 2118, 1747, 1732, 1508, 1458, 1389, 1290, 1215, 1200, 1138, 1119, 1051, 1018, 980, 918, 725 cm⁻¹; **HRMS** (ESI) m/z calcd for C₂₈H₄₄N₃O₆ ([M+NH₄]⁺): 518.3230, found: 518.3219; [α]²⁹.⁴D −38.9 (c 9.30, CH₂Cl₂).

Scheme S10. Synthesis of M5-NC

Synthesis of M6-NO₂: To a solution of M2-NO₂ (717 mg, 1.57 mmol) in toluene (31 mL) were added 1-hexanol (31 mL) and BF₃·Et₂O (9.5 mL). The mixture was stirred for 24 h at 100 °C. The reaction mixture was cooled to room temperature and concentrated under...
reduced pressure. To the mixture was added CH$_2$Cl$_2$ (100 mL) and saturated NaHCO$_3$ aq (100 mL) to quench the reaction. The organic phase was washed with water (100 mL × 2) and brine (100 mL) and dried over Na$_2$SO$_4$. The mixture was heated at 70 °C and dried under vacuum to remove an alcohol. The residue was purified with silica gel column chromatography (hexane/AcOEt = 95/5 to 90/10) to give M6-NO$_2$ as yellow oil (823 mg, 92%). 1H NMR (CDCl$_3$) δ 4.93 (2H, d, $J = 10.6$ Hz), 4.55 (2H, d, $J = 10.6$ Hz), 4.18–4.12 (6H, m), 2.45 (6H, s), 1.70–1.63 (4H, m), 1.44 (6H, d, $J = 6.9$ Hz), 1.36–1.29 (12H, m), 0.90 (6H, t, $J = 6.9$ Hz); 13C NMR (CDCl$_3$) δ 172.8, 144.3, 140.5, 130.8, 75.1, 65.4, 65.3, 31.5, 28.7, 25.7, 22.7, 19.0, 14.7, 14.1; IR (ATR, neat) 2932, 1740, 1543, 1456, 1362, 1300, 1269, 1198, 1140, 1113, 1068, 860, 783, 723 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{28}$H$_{48}$N$_3$O$_{10}$ ($[M+NH_4]^+$): 586.3340, found: 586.3329; $[\alpha]_D^{30}$ = -45.8 (c 10.8, CHCl$_3$).

Scheme S11. Synthesis of M6-NO$_2$

Synthesis of M6-NC: A suspension of M6-NO$_2$ (823 mg, 1.45 mmol), HCO$_2$NH$_4$ (602 mg, 9.55 mmol), and 10 wt% Pd/C (154 mg, 145 μmol) in EtOH (14 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (396 mg, 4.50 mmol) was added to the diamine dissolved in CH$_2$Cl$_2$ (11 mL). After stirring for 14 h, removal of volatiles under reduced pressure gave a diformate compound as white solid. POCl$_3$ (427 μL, 703 mg, 4.58 mmol) was added to a solution of diformate in Et$_3$N (2.12 mL) and CH$_2$Cl$_2$ (23 mL) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was washed with saturated NaHCO$_3$ aq (50 mL). The organic layer was dried over Na$_2$SO$_4$, filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (hexane/Et$_2$O = 75/25) to give M6-NC as pale yellow oil (421 mg, 43%). 1H NMR (C$_6$D$_6$) δ 4.79 (2H, d, $J = 10.3$ Hz), 4.23 (2H, d, $J = 10.6$ Hz), 4.10–4.06 (4H, m), 3.98 (2H, q, $J = 6.9$ Hz), 2.21 (6H, s), 1.51–1.48 (4H, m), 1.34 (6H, d, $J = 6.9$ Hz), 1.22–1.18 (8H, m), 0.86 (6H, t, $J = 7.0$ Hz); 13C NMR (C$_6$D$_6$) δ 175.4, 172.7, 137.9, 134.4, 124.4, 75.0, 65.6, 65.0, 31.7, 29.0, 25.9, 22.9,
18.9, 15.4, 14.2; IR (ATR, neat) 2957, 2932, 2860, 2116, 1742, 1456, 1387, 1304, 1269, 1196, 1142, 1113, 1057, 1014, 926, 812, 754, 727, 642, 613 cm⁻¹; HRMS (ESI) m/z calc'd for C_{30}H_{48}N_{10}O_{6} ([M+NH₄]⁺): 546.3543, found: 546.3534; [α]_{D}^{27.3} −34.7 (c 8.54, CH₂Cl₂).

Scheme S12. Synthesis of M6-NC

Synthesis of M7-NO₂: To a solution of M2-NO₂ (1.03 g, 2.25 mmol) in toluene (45 mL) were added 1-heptanol (45 mL) and BF₃·Et₂O (14 mL). The mixture was stirred for 24 h at 100 °C. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. To the mixture was added CH₂Cl₂ (100 mL) and saturated NaHCO₃ aq (100 mL) to quench the reaction. The organic phase was washed with water (100 mL × 2) and brine (100 mL) and dried over Na₂SO₄. The mixture was heated at 70 °C and dried under vacuum to remove an alcohol. The residue was purified with silica gel column chromatography (hexane/AcOEt = 90/10 to 80/20) to give M7-NO₂ as yellow oil (1.10 g, 82%). ¹H NMR (CDCl₃) δ 4.93 (2H, d, J = 10.6 Hz), 4.55 (2H, d, J = 10.3 Hz), 4.22–4.10 (6H, m), 2.44 (6H, s), 1.70–1.63 (4H, m), 1.44 (6H, d, J = 6.8 Hz), 1.37–1.29 (16H, m), 0.89 (6H, t, J = 6.9 Hz); ¹³C NMR (CDCl₃) δ 172.8, 144.3, 140.5, 130.8, 75.1, 65.4, 65.2, 31.8, 29.0, 28.7, 26.0, 22.7, 19.0, 14.7, 14.2; IR (ATR, neat) 2930, 2858, 1740, 1545, 1456, 1300, 1202, 1142, 1113, 1068, 1016, 860, 783, 756, 723 cm⁻¹; HRMS (ESI) m/z calc'd for C_{30}H_{48}N₃O_{10} ([M+NH₄]⁺): 614.3653, found: 614.3637; [α]_{D}^{28.3} −39.2 (c 10.3, CHCl₃).

Scheme S13. Synthesis of M7-NO₂
Synthesis of M7-NC: A suspension of M7-NO$_2$ (1.04 g, 1.74 mmol), HCO$_2$NH$_4$ (725 mg, 11.5 mmol), and 10 wt% Pd/C (185 mg, 174 μmol) in EtOH (17 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (609 mg, 6.91 mmol) was added to the diamine dissolved in CH$_2$Cl$_2$ (17 mL). After stirring for 14 h, removal of volatiles under reduced pressure gave a diformate compound as white solid. POCl$_3$ (447 μL, 736 mg, 4.80 mmol) was added to a solution of diformate in Et$_3$N (2.22 mL) and CH$_2$Cl$_2$ (24 mL) at 0 °C. After stirring for 50 min at 0 °C, the reaction mixture was washed with saturated NaHCO$_3$ aq (40 mL). The organic layer was dried over Na$_2$SO$_4$, filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (hexane/Et$_2$O = 75/25) to give M7-NC as pale yellow oil (213 mg, 22%). 1H NMR (C$_6$D$_6$) δ 4.80 (2H, d, J = 10.6 Hz), 4.22 (2H, d, J = 10.6 Hz), 4.11–4.07 (4H, m), 3.98 (2H, q, J = 6.9 Hz), 2.21 (6H, s), 1.53–1.47 (4H, m), 1.35 (6H, d, J = 6.9 Hz), 1.28–1.18 (16H, m), 0.89 (6H, t, J = 7.0 Hz); 13C NMR (C$_6$D$_6$) δ 175.5, 172.7, 137.9, 134.4, 124.4, 75.0, 65.7, 65.1, 32.1, 29.2, 29.1, 26.2, 23.0, 18.9, 15.4, 14.3; IR (ATR, neat) 2914, 2118, 1747, 1732, 1458, 1387, 1290, 1205, 1138, 1072, 1016, 926, 760, 719, 646 cm$^{-1}$; HRMS (ESI) m/z calcd for C$_{32}$H$_{52}$N$_3$O$_6$ ([M+NH$_4$]$^+$): 574.3856, found: 574.3840; $[\alpha]^{25.7}_{D}$ −34.9 (c 9.62, CH$_2$Cl$_2$).

Scheme S14. Synthesis of M7-NC

Synthesis of M8-NO$_2$: To a solution of M2-NO$_2$ (611 mg, 1.34 mmol) in toluene (27 mL) were added 1-octanol (27 mL) and BF$_3$·Et$_2$O (8.2 mL). The mixture was stirred for 24 h at 100 °C. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. To the mixture was added CH$_2$Cl$_2$ (100 mL) and saturated NaHCO$_3$ aq (100 mL) to quench the reaction. The organic phase was washed with water (100 mL × 2) and brine (100 mL) and dried over Na$_2$SO$_4$. The mixture was heated at 70 °C and dried under vacuum to remove an alcohol. The residue was purified with silica gel column
chromatography (hexane/AcOEt = 90/10 to 80/20) to give M8-NO2 as yellow oil (556 mg, 68%). 1H NMR (CDCl3) δ 4.93 (2H, d, J = 10.6 Hz), 4.55 (2H, d, J = 10.3 Hz), 4.21–4.12 (6H, m), 2.45 (6H, s), 1.69–1.65 (4H, m), 1.44 (6H, d, J = 6.9 Hz), 1.33–1.28 (20H, m), 0.89 (6H, t, J = 7.0 Hz); 13C NMR (CDCl3) δ 172.8, 140.5, 130.8, 75.1, 65.4, 65.3, 31.9, 29.3, 28.8, 26.0, 22.8, 19.0, 14.7, 14.2; IR (ATR, neat) 2926, 2856, 1742, 1545, 1456, 1362, 1200, 1142, 1113, 1068, 1016, 953, 860, 783, 721 cm−1; HRMS (ESI) m/z calcd for C32H56N3O10 (M+NH4)+: 642.3966, found: 642.3952; [α]28.3D −38.4 (c 10.0, CHCl3).

Scheme S15. Synthesis of M8-NO2

Synthesis of M8-NC: A suspension of M8-NO2 (577 mg, 0.92 mmol), HCO2NH4 (384 mg, 9.23 mmol), and 10 wt% Pd/C (98.2 mg, 92.3 μmol) in EtOH (9.2 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (260 mg, 2.95 mmol) was added to the diamine dissolved in CH2Cl2 (7.4 mL). After stirring for 14 h, removal of volatiles under reduced pressure gave a diformate compound as white solid. POCl3 (210 μL, 346 mg, 2.26 mmol) was added to a solution of diformate in Et3N (11.3 mL) and CH2Cl2 (24 mL) at 0 °C. After stirring for 50 min at 0 °C, the reaction mixture was washed with saturated NaHCO3 aq (40 mL). The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (hexane/Et2O = 75/25) to give M8-NC as pale yellow oil (235 mg, 27%). 1H NMR (CD6D6) δ 4.82 (2H, d, J = 10.6 Hz), 4.20 (2H, d, J = 10.6 Hz), 4.11 (4H, t, J = 6.7 Hz), 3.96 (2H, q, J = 6.8 Hz), 2.18 (6H, s), 1.54–1.50 (4H, m), 1.34 (6H, d, J = 6.9 Hz), 1.28–1.22 (20H, m), 0.91 (6H, t, J = 7.0 Hz); 13C NMR (CD6D6) δ 172.7, 137.7, 134.3, 75.0, 65.7, 65.1, 32.2, 29.6, 29.1, 26.3, 23.1, 18.9, 15.4, 14.3; IR (ATR, neat) 2922, 2851, 2118, 1747, 1732, 1470, 1387, 1292, 1202, 1138, 1119, 1076, 1053, 1022, 941, 918, 756, 719, 650, 621 cm−1; HRMS (ESI) m/z calcd for C34H56N3O6 ([M+NH4]+): 602.4169, found: 602.4158; [α]29.7D −34.0 (c 9.52, CH2Cl2).
Scheme S16. Synthesis of M8-NC

Synthesis of M9-NO₂: To a solution of M2-NO₂ (1.16 g, 2.53 mmol) in toluene (51 mL) were added 1-nonanol (51 mL) and BF₃·Et₂O (15.5 mL). The mixture was stirred for 24 h at 100 °C. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. To the mixture was added CH₂Cl₂ (200 mL) and saturated NaHCO₃ aq (200 mL) to quench the reaction. The organic phase was washed with water (200 mL × 2) and brine (200 mL) and dried over Na₂SO₄. The mixture was heated at 90 °C and dried under vacuum to remove an alcohol. The residue was purified with silica gel column chromatography (hexane/AcOEt = 90/10 to 80/20) to give M9-NO₂ as yellow oil (1.54 g, 93%).

1H NMR (CDCl₃) δ 4.93 (2H, d, J = 10.3 Hz), 4.55 (2H, d, J = 10.6 Hz), 4.22–4.10 (6H, m), 2.44 (6H, s), 1.70–1.63 (4H, m), 1.44 (6H, d, J = 6.8 Hz), 1.33–1.27 (24H, m), 0.88 (6H, t, J = 6.9 Hz); 13C NMR (CDCl₃) δ 172.8, 144.3, 140.5, 130.8, 75.1, 65.4, 65.3, 32.0, 29.6, 29.4, 28.7, 26.0, 22.8, 19.0, 14.7, 14.2; IR (ATR, neat) 2926, 2854, 1742, 1545, 1456, 1364, 1269, 1200, 1142, 1113, 1067, 1018, 964, 922, 860, 783, 756, 721 cm⁻¹; HRMS (ESI) m/z calcld for C₃₄H₆₀N₃O₁₀ ([M+NH₄⁺]: 670.4279, found: 670.4260; [α]²⁸7.₉ −34.6 (c 9.72, CHCl₃).

Scheme S17. Synthesis of M9-NO₂

Synthesis of M9-NC: A suspension of M9-NO₂ (1.49 g, 2.28 mmol), HCO₂NH₄ (948 mg, 15.0 mmol), and 10 wt% Pd/C (242 mg, 228 μmol) in EtOH (23 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (802 mg, 9.11 mmol) was added to the diamine dissolved in CH₂Cl₂ (23 mL). After stirring for 14 h, removal of volatiles under reduced
pressure gave a diformate compound as white solid. POCl₃ (564 μL, 928 mg, 6.05 mmol) was added to a solution of diformate in Et₃N (2.80 mL) and CH₂Cl₂ (30 mL) at 0 °C. After stirring for 50 min at 0 °C, the reaction mixture was washed with saturated NaHCO₃ aq (40 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (hexane/Et₂O = 75/25) to give M9-NC as pale yellow oil (498 mg, 36%).

\[\text{1}^H \text{NMR (C}_6\text{D}_6) \delta 4.81 (2H, d, J = 10.6 \text{ Hz}), 4.21 (2H, d, J = 10.3 \text{ Hz}), 4.11 (4H, t, J = 6.9 \text{ Hz}), 3.97 (2H, q, J = 6.9 \text{ Hz}), 2.20 (6H, s), 1.36–1.23 (30H, m), 0.92 (6H, t, J = 6.9 Hz); \text{13}C \text{ NMR (C}_6\text{D}_6) \delta 175.3, 172.5, 137.6, 134.1, 124.2, 74.8, 65.4, 64.9, 32.0, 29.7, 29.4, 28.8, 26.0, 22.9, 18.7; \text{IR (ATR, neat)} 2914, 2849, 2120, 1747, 1732, 1470, 1389, 1290, 1140, 1121, 1053, 1022, 920, 719 \text{ cm}^{-1}; \text{HRMS (ESI) m/z calcd for C}_{36}H_{60}N_3O_6 ([M+NH}_4]^+: 630.4482, \text{found: 630.4475}; [\alpha]^{28.1}_D –40.4 (c 11.3, CH₂Cl₂).

\[\text{1}H \text{NMR (CDCl}_3) \delta 4.93 (2H, d, J = 10.3 \text{ Hz}), 4.55 (2H, d, J = 10.6 \text{ Hz}), 4.21–4.12 (6H, m), 2.44 (6H, s), 1.70–1.63 (4H, m), 1.44 (6H, d, J = 6.8 \text{ Hz}), 1.33–1.27 (28H, m), 0.88 (6H, t, J = 6.9 \text{ Hz}); \text{13}C \text{ NMR (CDCl}_3) \delta 172.8, 144.3, 140.5, 130.8, 75.1, 65.4, 65.3, 32.0, 29.7, 29.4, 28.8, 26.0, 22.8, 19.0, 14.7, 14.2; \text{IR (ATR, neat)} 3854, 3744, 3649, 3628, 2924, 2854, 1742, 1545, 1456, 1362, 1300, 1269, 1200, 1142, 1113, 1068, 1016, 974, 919, 884, 851, 828, 794, 761, 729, 696, 664, 632, 599, 567, 535, 503, 471, 439, 407, 375, 343, 311, 280, 248, 216, 185, 154, 123, 92, 61, 30, 0 \text{ cm}^{-1}; \text{HRMS (ESI) m/z calcd for C}_{36}H_{60}N_3O_6 ([M+NH}_4]^+: 630.4482, \text{found: 630.4475}; [\alpha]^{28.1}_D –40.4 (c 11.3, CH₂Cl₂).

Scheme S18. Synthesis of M9-NC

Synthesis of M10-NO₂: To a solution of M2-NO₂ (1.34 g, 2.93 mmol) in toluene (59 mL) were added 1-decanol (59 mL) and BF₃・Et₂O (18.0 mL). The mixture was stirred for 24 h at 100 °C. The reaction mixture was cooled to room temperature and concentrated under reduced pressure. To the mixture was added CH₂Cl₂ (200 mL) and saturated NaHCO₃ aq (200 mL) to quench the reaction. The organic phase was washed with water (200 mL × 2) and brine (200 mL) and dried over Na₂SO₄. The mixture was heated at 110 °C and dried under vacuum to remove an alcohol. The residue was purified with silica gel column chromatography (hexane/AcOEt = 92/8 to 80/20) to give M10-NO₂ as yellow oil (1.76 g, 88%).

\[\text{1}^H \text{NMR (CDCl}_3) \delta 4.93 (2H, d, J = 10.3 \text{ Hz}), 4.55 (2H, d, J = 10.6 \text{ Hz}), 4.21–4.12 (6H, m), 2.44 (6H, s), 1.70–1.63 (4H, m), 1.44 (6H, d, J = 6.8 \text{ Hz}), 1.33–1.27 (28H, m), 0.88 (6H, t, J = 6.9 \text{ Hz}); \text{13}C \text{ NMR (CDCl}_3) \delta 172.8, 144.3, 140.5, 130.8, 75.1, 65.4, 65.3, 32.0, 29.7, 29.4, 28.8, 26.0, 22.8, 19.0, 14.7, 14.2; \text{IR (ATR, neat)} 3854, 3744, 3649, 3628, 2924, 2854, 1742, 1545, 1456, 1362, 1300, 1269, 1200, 1142, 1113, 1068, 1016, 974, 919, 884, 851, 828, 794, 761, 729, 696, 664, 632, 599, 567, 535, 503, 471, 439, 407, 375, 343, 311, 280, 248, 216, 185, 154, 123, 92, 61, 30, 0 \text{ cm}^{-1}; \text{HRMS (ESI) m/z calcd for C}_{36}H_{60}N_3O_6 ([M+NH}_4]^+: 630.4482, \text{found: 630.4475}; [\alpha]^{28.1}_D –40.4 (c 11.3, CH₂Cl₂).

Scheme S19. Synthesis of M10-NO₂

Synthesis of M10-NC: A suspension of M10-NO₂ (1.64 g, 2.41 mmol), HCO₂NH₄ (1.00 g, 15.9 mmol) and 10 wt% Pd/C (257 mg, 241 μmol) in EtOH (24 mL) was stirred for 3 h. The mixture was filtered through a pad of Celite and evaporated under vacuum to give a diamine compound as yellow oil. AFA (843 mg, 9.57 mmol) was added to the diamine dissolved in CH₂Cl₂ (24 mL). After stirring for 14 h, removal of volatiles under reduced pressure gave a diformate compound as white solid. POCl₃ (589 μL, 969 mg, 6.32 mmol) was added to a solution of diformate in Et₃N (2.80 mL) and CH₂Cl₂ (32 mL) at 0 °C. After stirring for 30 min at 0 °C, the reaction mixture was washed with saturated NaHCO₃ aq (40 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified with silica gel column chromatography (hexane/Et₂O = 75/25) to give M10-NC as pale yellow oil (383 mg, 26%). ¹H NMR (C₆D₆) δ 4.82 (2H, d, J = 10.6 Hz), 4.20 (2H, d, J = 10.6 Hz), 4.12 (4H, t, J = 6.7 Hz), 3.97 (2H, q, J = 6.9 Hz), 2.18 (6H, s), 1.53–1.52 (4H, m), 1.35 (6H, d, J = 6.8 Hz), 1.28–1.24 (28H, m), 0.93 (6H, t, J = 6.7 Hz); ¹³C NMR (C₆D₆) δ 176.2, 173.2, 138.3, 134.9, 125.0, 75.6, 66.2, 65.6, 32.9, 30.5, 30.3, 30.2, 29.6, 26.8, 23.7, 19.5, 15.9, 14.9; IR (ATR, neat) 2914, 2849, 2118, 1749, 1732, 1470, 1389, 1292, 1215, 1200, 1138, 1119, 1053, 1022, 966, 920, 719, 650, 609 cm⁻¹; HRMS (ESI) m/z calcd for C₃₈H₆₄N₃O₆ ([M+NH₄]⁺): 658.4795, found: 658.4778; [α]²⁷.₈ D − 37.5 (c 9.72, CH₂Cl₂).
Synthesis of 1(40): M1-NC (128 mg, 329 µmol) was dissolved in THF (13 mL). A THF solution of o-TolNiCl(PMe$_3$)$_2$ (9.97 mM, 826 µL, 8.24 µmol) was added to the solution. After stirring for 2 h, NaBH$_4$ (49.8 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH$_4$Cl aq (20 mL) was added and extracted with CH$_2$Cl$_2$ (20 mL). The organic phase was washed with water (20 mL) and brine (20 mL) and dried over Na$_2$SO$_4$ followed by preparative GPC gave 1(40) as a beige solid (126 mg, 98%). 1H NMR (CDCl$_3$) δ 4.98 (2H, br s), 4.63 (2H, br s), 4.12 (2H, br s), 3.71–3.66 (6H, m), 2.38–2.26 (6H, m), 1.36 (6H, br s); GPC (CHCl$_3$, g/mol): $M_n = 9.6 \times 10^3$, $M_w/M_n = 1.17$.

Synthesis of 2(40): M2-NC (23.0 mg, 55.1 µmol) was dissolved in THF (2.2 mL). A THF solution of o-TolNiCl(PMe$_3$)$_2$ (9.97 mM, 138 µL, 1.38 µmol) was added to the solution. After stirring for 2 h, NaBH$_4$ (8.34 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH$_4$Cl aq (10 mL) was added and extracted with CH$_2$Cl$_2$ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na$_2$SO$_4$ followed by preparative GPC gave 2 (40) as a beige solid (21.6 mg, 94%). 1H NMR (CDCl$_3$) δ 5.00 (2H, br s), 4.61 (2H, br s), 4.15–4.09 (6H, m), 2.38 (6H, br s), 1.35 (6H, br s), 1.19–1.16 (6H, m); GPC (CHCl$_3$, g/mol): $M_n = 9.6 \times 10^3$, $M_w/M_n = 1.13$.

S17
Scheme S22. Synthesis of polymer 2(40)

\[
\text{M3-NC (40 eq)} \xrightarrow{1) \text{o-tolNiCl(PMe}_3\text{)}_2} \text{THF} \xrightarrow{2) \text{NaBH}_4} \text{2(40)}
\]

Synthesis of 3(40): M3-NC (23.9 mg, 53.7 μmol) was dissolved in THF (2.2 mL). A THF solution of o-TolNiCl(PMe3)2 (9.97 mM, 135 μL, 1.34 μmol) was added to the solution. After stirring for 2 h, NaBH4 (20.3 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH4Cl aq (10 mL) was added and extracted with CH2Cl2 (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na2SO4 followed by preparative GPC gave 3(40) as a beige solid (19.9 mg, 84%). 1H NMR (CDCl3) δ 5.00 (2H, br s), 4.59 (2H, br s), 4.10 (6H, br s), 2.37 (6H, br s), 1.62–1.57 (4H, m), 1.35 (6H, br s), 0.84–0.81 (6H, m), GPC (CHCl3, g/mol): \(M_n = 8.0 \times 10^3\), \(M_w/M_n = 1.17\).

Scheme S23. Synthesis of polymer 3(40)

\[
\text{M3-NC (40 eq)} \xrightarrow{1) \text{o-tolNiCl(PMe}_3\text{)}_2} \text{THF} \xrightarrow{2) \text{NaBH}_4} \text{3(40)}
\]

Synthesis of 4(40): M4-NC (30.7 mg, 65.0 μmol) was dissolved in THF (2.6 mL). A THF solution of o-TolNiCl(PMe3)2 (9.97 mM, 163 μL, 1.63 μmol) was added to the solution. After stirring for 2 h, NaBH4 (24.6 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH4Cl aq (10 mL) was added and extracted with CH2Cl2 (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na2SO4 followed by preparative GPC gave 4(40) as a beige solid (26.9 mg, 87%). 1H NMR (CDCl3) δ 4.99 (4H, br s), 4.58 (4H, br s), 4.11–4.07
(6H, m), 2.41–2.31 (6H, m), 1.57 (4H, br s), 1.36–1.29 (10H, m), 0.85–0.82 (6H, m); GPC (CHCl₃, g/mol): $M_n = 8.8 \times 10^3$, $M_w/M_n = 1.15$.

Scheme S24. Synthesis of polymer 4(40)

Synthesis of 5(40): M5-NC (22.0 mg, 43.9 μmol) was dissolved in THF (1.8 mL). A THF solution of o-TolNiCl(PMe₃)₂ (9.97 mM, 110 μL, 1.10 μmol) was added to the solution. After stirring for 2 h, NaBH₄ (16.6 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH₄Cl aq (10 mL) was added and extracted with CH₂Cl₂ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na₂SO₄ followed by preparative GPC gave 5(40) as a beige solid (21.0 mg, 96%). 1H NMR (CDCl₃) δ 5.00 (2H, br s), 4.58 (2H, br s), 4.22–4.05 (6H, m), 2.38 (6H, br s), 1.72–1.58 (4H, m), 1.35–1.22 (14H, m), 0.81 (6H, br s); GPC (CHCl₃, g/mol): $M_n = 1.2 \times 10^4$, $M_w/M_n = 1.11$.

Scheme S25. Synthesis of polymer 5(40)

Synthesis of 6(40): M6-NC (39.1 mg, 74.0 μmol) was dissolved in THF (3.0 mL). A THF solution of o-TolNiCl(PMe₃)₂ (9.97 mM, 186 μL, 1.85 μmol) was added to the solution. After stirring for 2 h, NaBH₄ (28.0 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH₄Cl aq (15 mL) was added and extracted with CH₂Cl₂ (15 mL). The organic phase was washed with water (15 mL) and brine (15 mL) and dried over Na₂SO₄ followed by preparative GPC gave 6(40) as a beige solid (35.1 mg, 90%). 1H NMR (CDCl₃) δ 5.00 (2H, br s), 4.58 (2H, br s), 4.10–4.03
(6H, m), 2.38 (6H, br s), 1.58 (4H, br s), 1.36–1.22 (18H, m), 0.81 (6H, br s); GPC (CHCl₃, g/mol): $M_n = 1.2 \times 10^4$, $M_w/M_n = 1.13$.

Scheme S26. Synthesis of polymer 6(40)

Synthesis of 7(40): M7-NC (60.3 mg, 108 μmol) was dissolved in THF (4.3 mL). A THF solution of o-TolNiCl(PMe₃)₂ (9.97 mM, 272 μL, 2.71 μmol) was added to the solution. After stirring for 2 h, NaBH₄ (41.0 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH₄Cl aq (20 mL) was added and extracted with CH₂Cl₂ (20 mL). The organic phase was washed with water (20 mL) and brine (20 mL) and dried over Na₂SO₄ followed by preparative GPC gave 7(40) as a beige solid (54.8 mg, 91%). 1H NMR (CDCl₃) δ 5.00 (2H, br s), 4.57 (2H, br s), 4.11–4.06 (6H, m), 2.37 (6H, br s), 1.59 (4H, br s), 1.37–1.21 (22H, m), 0.87–0.81 (6H, m); GPC (CHCl₃, g/mol): $M_n = 1.3 \times 10^4$, $M_w/M_n = 1.12$.

Scheme S27. Synthesis of polymer 7(40)

Synthesis of 8(40): M8-NC (28.1 mg, 48.1 μmol) was dissolved in THF (1.9 mL). A THF solution of o-TolNiCl(PMe₃)₂ (9.97 mM, 120 μL, 1.20 μmol) was added to the solution. After stirring for 2 h, NaBH₄ (18.1 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH₄Cl aq (10 mL) was added and extracted with CH₂Cl₂ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na₂SO₄ followed by preparative GPC gave 8(40) as
a beige solid (24.5 mg, 87%). 1H NMR (CDCl$_3$) δ 4.99 (2H, br s), 4.57 (2H, br s), 4.11–4.03 (6H, m), 2.37 (6H, br s), 1.60 (4H, br s), 1.41–1.22 (26H, m), 0.85–0.82 (6H, m); GPC (CHCl$_3$, g/mol): $M_n = 1.2 \times 10^4$, $M_w/M_n = 1.13$.

Scheme S28. Synthesis of polymer 8(40)

Synthesis of 9(40): M9-NC (32.6 mg, 53.1 μmol) was dissolved in THF (2.1 mL). A THF solution of o-TolNiCl(PMe$_3$)$_2$ (8.73 mM, 152 μL, 1.33 μmol) was added to the solution. After stirring for 2 h, NaBH$_4$ (20.1 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH$_4$Cl aq (10 mL) was added and extracted with CH$_2$Cl$_2$ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na$_2$SO$_4$ followed by preparative GPC gave 9(40) as a beige solid (30.1 mg, 92%). 1H NMR (CDCl$_3$) δ 4.99 (2H, br s), 4.57 (2H, br s), 4.19–4.03 (6H, m), 2.36 (6H, br s), 1.60–1.58 (4H, m), 1.43–1.22 (28H, m), 0.89–0.83 (6H, m); GPC (CHCl$_3$, g/mol): $M_n = 1.1 \times 10^4$, $M_w/M_n = 1.16$.

Scheme S29. Synthesis of polymer 9(40)

Synthesis of 10(40): M10-NC (37.4 mg, 58.4 μmol) was dissolved in THF (2.3 mL). A THF solution of o-TolNiCl(PMe$_3$)$_2$ (8.73 mM, 167 μL, 1.50 μmol) was added to the solution. After stirring for 2 h, NaBH$_4$ (22.1 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH$_4$Cl aq (10 mL) was added and extracted with CH$_2$Cl$_2$ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na$_2$SO$_4$ followed by preparative GPC gave 10(40) as
a beige solid (31.0 mg, 83%). 1H NMR (CDCl$_3$) δ 4.99 (2H, br s), 4.57 (2H, br s), 4.12–4.02 (6H, m), 2.36 (6H, br s), 1.60 (4H, br s), 1.37–1.23 (32H, m), 0.86–0.83 (6H, m); GPC (CHCl$_3$, g/mol): $M_n = 1.0 \times 10^4$, $M_w/M_n = 1.14$.

Scheme S30. Synthesis of polymer 10(40)

![Scheme S30]

Synthesis of 5(20): M5-NC (28.9 mg, 57.6 μmol) was dissolved in THF (2.3 mL). A THF solution of o-TolNiCl(PMe$_3$)$_2$ (8.73 mM, 330 μL, 2.88 μmol) was added to the solution. After stirring for 2 h, NaBH$_4$ (43.6 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH$_4$Cl aq (10 mL) was added and extracted with CH$_2$Cl$_2$ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na$_2$SO$_4$ followed by preparative GPC gave 5(20) as a beige solid (25.3 mg, 88%). 1H NMR (CDCl$_3$) δ 4.97 (2H, br s), 4.55 (2H, br s), 4.16–4.04 (6H, m), 2.33–2.21 (6H, m), 1.57 (4H, br s), 1.40–1.22 (14H, m), 0.92–0.80 (6H, m); GPC (CHCl$_3$, g/mol): $M_n = 6.3 \times 10^3$, $M_w/M_n = 1.16$.

Scheme S31. Synthesis of polymer 5(20)

![Scheme S31]

Synthesis of 5(60): M5-NC (27.0 mg, 53.9 μmol) was dissolved in THF (2.2 mL). A THF solution of o-TolNiCl(PMe$_3$)$_2$ (8.73 mM, 103 μL, 0.898 μmol) was added to the solution. After stirring for 2 h, NaBH$_4$ (13.6 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH$_4$Cl aq (10 mL) was added and extracted with CH$_2$Cl$_2$ (10 mL). The organic phase was washed with water (10
mL) and brine (10 mL) and dried over Na₂SO₄ followed by preparative GPC gave 5(60) as a beige solid (25.5 mg, 95%). \(^1^H\) NMR (CDCl₃) δ 5.01 (2H, br s), 4.59 (2H, br s), 4.10–4.03 (6H, m), 2.39 (6H, br s), 1.58 (4H, br s), 1.37–1.22 (14H, m), 0.81 (6H, br s); GPC (CHCl₃, g/mol): \(M_n = 1.6 \times 10^4\), \(M_w/M_n = 1.11\).

Scheme S32. Synthesis of polymer 5(60)

Synthesis of 5(80): M5-NC (29.1 mg, 58.0 \(\mu\)mol) was dissolved in THF (2.3 mL). A THF solution of \(o\)-TolNiCl(PMe₃)₂ (8.73 mM, 83.1 \(\mu\)L, 0.726 \(\mu\)mol) was added to the solution. After stirring for 2 h, NaBH₄ (11.0 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH₄Cl aq (10 mL) was added and extracted with CH₂Cl₂ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na₂SO₄ followed by preparative GPC gave 5(80) as a beige solid (25.1 mg, 86%). \(^1^H\) NMR (CDCl₃) δ 5.01 (2H, br s), 4.59 (2H, br s), 4.10–4.01 (6H, m), 2.39 (6H, br s), 1.58 (4H, br s), 1.37–1.23 (14H, m), 0.81 (6H, br s); GPC (CHCl₃, g/mol): \(M_n = 2.6 \times 10^4\), \(M_w/M_n = 1.10\).

Scheme S33. Synthesis of polymer 5(80)

Synthesis of 5(100): M5-NC (28.8 mg, 57.5 \(\mu\)mol) was dissolved in THF (2.3 mL). A THF solution of \(o\)-TolNiCl(PMe₃)₂ (8.73 mM, 65.8 \(\mu\)L, 0.575 \(\mu\)mol) was added to the solution. After stirring for 10 h, NaBH₄ (8.70 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH₄Cl aq (10 mL) was
added and extracted with CH₂Cl₂ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na₂SO₄ followed by preparative GPC gave 5(100) as a beige solid (24.7 mg, 86%). ¹H NMR (CDCl₃) δ 5.01 (2H, br s), 4.59 (2H, br s), 4.10–4.01 (6H, m), 2.39 (6H, br s), 1.58 (4H, br s), 1.43–1.23 (14H, m), 0.93 (6H, br s); GPC (CHCl₃, g/mol): $M_n = 3.7 \times 10^4$, $M_w/M_n = 1.11$.

Scheme S34. Synthesis of polymer 5(100)

Synthesis of 5(150): M₅-NC (32.6 mg, 65.2 μmol) was dissolved in THF (2.3 mL). A THF solution of o-TolNiCl(PMe₃)₂ (8.73 mM, 49.8 μL, 0.435 μmol) was added to the solution. After stirring for 14 h, NaBH₄ (6.58 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH₄Cl aq (10 mL) was added and extracted with CH₂Cl₂ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na₂SO₄ followed by preparative GPC gave 5(150) as a beige solid (28.3 mg, 86%). ¹H NMR (CDCl₃) δ 5.02 (2H, br s), 4.63 (2H, br s), 4.10–4.01 (6H, m), 2.39 (6H, br s), 1.59 (4H, br s), 1.36–1.23 (14H, m), 0.81 (6H, br s); GPC (CHCl₃, g/mol): $M_n = 5.6 \times 10^4$, $M_w/M_n = 1.15$.

Scheme S35. Synthesis of polymer 5(150)

Synthesis of 5(200): M₅-NC (34.6 mg, 69.2 μmol) was dissolved in THF (2.8 mL). A THF solution of o-TolNiCl(PMe₃)₂ (8.73 mM, 39.6 μL, 0.346 μmol) was added to the solution. After stirring for 14 h, NaBH₄ (5.24 mg) was added to the reaction mixture at room temperature.
temperature. After stirring for 1 h at room temperature, saturated NH₄Cl aq (10 mL) was added and extracted with CH₂Cl₂ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na₂SO₄ followed by preparative GPC gave 5(200) as a beige solid (31.6 mg, 91%). ¹H NMR (CDCl₃) δ 5.01 (2H, br s), 4.60 (2H, br s), 4.10–4.03 (6H, m), 2.39 (6H, br s), 1.58 (4H, br s), 1.36–1.23 (14H, m), 0.81 (6H, br s); GPC (CHCl₃, g/mol): $M_n = 8.5 \times 10^4$, $M_w/M_n = 1.09$.

Scheme S36. Synthesis of polymer 5(200)

![Scheme S36](image)

Synthesis of 5(300): M₅-NC (34.2 mg, 68.2 μmol) was dissolved in THF (2.8 mL). A THF solution of o-TolNiCl(PMe₃)₂ (8.73 mM, 26.1 μL, 0.227 μmol) was added to the solution. After stirring for 14 h, NaBH₄ (3.44 mg) was added to the reaction mixture at room temperature. After stirring for 1 h at room temperature, saturated NH₄Cl aq (10 mL) was added and extracted with CH₂Cl₂ (10 mL). The organic phase was washed with water (10 mL) and brine (10 mL) and dried over Na₂SO₄ followed by preparative GPC gave 5(300) as a beige solid (29.7 mg, 87%). ¹H NMR (CDCl₃) δ 5.03 (2H, br s), 4.68 (2H, br s), 4.10–4.03 (6H, m), 2.39 (6H, br s), 1.58 (4H, br s), 1.36–1.23 (14H, m), 0.81 (6H, br s); GPC (CHCl₃, g/mol): $M_n = 8.7 \times 10^4$, $M_w/M_n = 1.17$.

Scheme S37. Synthesis of polymer 5(300)

![Scheme S37](image)
Synthesis of 5(1000/50):

[Polymerization] A THF solution of o-TolNiCl(PMe₃)₂ (8.73 mM, 134 μL, 1.17 μmol) was added to THF (29 mL). To the solution was added a mixture of monomer M5-NC (587 mg, 1.17 mmol) and S1 (58.7 μmol) in THF (20 mL) at room temperature. The mixture was stirred for 24 h at room temperature. To the reaction mixture was added NaBH₄ (17.8 mg), and the mixture was stirred for 1 h. The solvent was then evaporated until approximately half of the original volume. The mixture was poured into vigorously stirred MeOH (600 mL), and precipitated polymer was collected by centrifugation followed by washing with MeOH × 2. After drying in vacuo, fibriform polymer was obtained.

[Reduction of Phosphine Sulfide] A mixture of the obtained polymer (56.1 μmol P) and P(NMe₂)₃ (0.408 mL, 2.24 mmol) in toluene (5.3 mL) was stirred at 110 °C for 24 h. The mixture was diluted with THF (1 mL) and poured into vigorously stirred MeOH (600 mL). Precipitated material was collected by filtration and washed with MeOH × 2 to give 5(1000/50) as fibriform solid (531 mg, 91%). ¹H NMR (CDCl₃) δ 4.96–4.10 (10H, m), 2.38 (6H, br s), 1.59–1.23 (18H, m), 0.81 (6H, br s); ³¹P NMR (CDCl₃) δ −15.2; Molecular weight could not be determined by GPC, because of the exclusion limit of the column.

Scheme S38. Synthesis of random copolymer 5(1000/50)
3. Use of Polymer 5(1000/50) as a Chiral Ligand in the Asymmetric Suzuki-Miyaura coupling (SMC) Reaction

Scheme S39. Asymmetric SMC of 11 and 12 in the presence of 5(1000/50) in 1,2-DME or MTBE

Asymmetric SMC of 11 and 12 in the Presence of \(P \)-helical Polymer 5(1000/50) as a ligand in 1,2-DME: A solution of 5(1000/50) (104 mg, 10 \(\mu \)mol phosphorous atom) in 1,2-DME (1.1mL) was stirred for 24 h at 60 °C. To the solution was added Pd\(_2\)dba\(_3\) (5.0 mM in 1,2-DME, 500 \(\mu \)L, 2.5 \(\mu \)mol). The mixture was stirred at room temperature for 10 min. To the mixture were added K\(_3\)PO\(_4\) (63.7 mg, 0.3 mmol), 1-naphthylboronic acid 11 (30.0 mg, 0.2 mmol), aryl bromide 12 (31.5 mg, 0.1 mmol), and H\(_2\)O (160 \(\mu \)L). The mixture was stirred at 40 °C for 24 h. To the mixture was added 1,2-bis(diphenylphosphino)ethane (5 mg) to dissolve the gelled polymer. Subsequent addition of acetonitrile (10 mL) resulted in precipitation of polymer 5(1000/50). The suspension was passed through a pad of Celite using MeCN as an eluent. The filtrate was dried over Na\(_2\)SO\(_4\) and subjected to PTLC (hexane/AcOEt = 1/4). Further purification was made by GPC. The corresponding product (+)-(R)-form was isolated in 45% yield. The enantiomeric excess of the product was determined to be 91% by HPLC with CHIRALCEL® OZ-H (Eluent: Hexane/2-PrOH =
Asymmetric SMC of 11 and 12 in the Presence of P-helical Polymer 5(1000/50) as a ligand in MTBE: A solution of 5(1000/50) (104 mg, 10 μmol phosphorous atom) in MTBE (1.1mL) was stirred for 24 h at 60 °C. To the solution was added Pd$_2$dba$_3$ (5.0 mM in MTBE, 500 μL, 2.5 μmol). The mixture was stirred at room temperature for 10 min. To the mixture were added K$_3$PO$_4$ (63.7 mg, 0.3 mmol), 1-naphthylboronic acid 11 (30.0 mg, 0.2 mmol), aryl bromide 12 (31.5 mg, 0.1 mmol), and H$_2$O (160 μL). The mixture was stirred at 40 °C for 24 h. To the mixture was added 1,2-bis(diphenylphosphino)ethane (5 mg) to dissolve the gelled polymer. Subsequent addition of acetonitrile (10 mL) resulted in precipitation of polymer 5(1000/50). The suspension was passed through a pad of Celite using MeCN as an eluent. The filtrate was dried over Na$_2$SO$_4$ and subjected to PTLC (hexane/AcOEt = 1/4). Further purification was made by GPC. The corresponding product (−)-(S)-form was isolated in 71% yield. The enantiomeric excess of the product was determined to be 93% by HPLC with CHIRALCEL® OZ-H (Eluent: Hexane/2-PrOH = 80/20, Flow rate: 0.6 mL/min, Retention time: t_R of (+)-isomer = 17.3 min, t_R of (−)-isomer = 14.9 min).
Figure S1. HPLC trace of the product of the asymmetric SMC of 11 and 12 in 1,2-DME. Enantiomeric excess was found to be 91% (R).
Figure S2. HPLC trace of the product of the asymmetric SMC of 11 and 12 in MTBE.

Enantiomeric excess was found to be 93% (S).
4. Summary of CD and UV Measurements of Polymer Solutions

Table S1. Structures and screw-sense induction properties (g_{abs}) of polymers containing chiral side chains

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$x = 1$</th>
<th>$x = 2$</th>
<th>$x = 3$</th>
<th>$x = 4$</th>
<th>$x = 5$</th>
<th>$x = 6$</th>
<th>$x = 7$</th>
<th>$x = 8$</th>
<th>$x = 9$</th>
<th>$x = 10$</th>
<th>(S)-BQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHCl$_3$</td>
<td>-2.28</td>
<td>-2.38</td>
<td>-2.14</td>
<td>-2.18</td>
<td>-2.07</td>
<td>-2.12</td>
<td>-2.16</td>
<td>-2.10</td>
<td>-2.11</td>
<td>-2.36</td>
<td></td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>-2.06</td>
<td>-2.01</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-2.06</td>
<td></td>
</tr>
<tr>
<td>1,1,2-TCE</td>
<td>-2.64</td>
<td>-2.70</td>
<td>-2.57</td>
<td>-2.47</td>
<td>-2.83</td>
<td>-2.37</td>
<td>-2.58</td>
<td>-2.52</td>
<td>-2.41</td>
<td>-2.29</td>
<td>+2.81</td>
</tr>
<tr>
<td>Toluene</td>
<td>-1.97</td>
<td>-1.73</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-a</td>
<td>-1.97</td>
<td></td>
</tr>
<tr>
<td>THF</td>
<td>-1.49</td>
<td>-0.18</td>
<td>-1.69</td>
<td>-0.77</td>
<td>-1.88</td>
<td>-1.71</td>
<td>-1.85</td>
<td>-1.78</td>
<td>-1.75</td>
<td>-1.71</td>
<td>-1.90</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>-1.64</td>
<td>+0.48</td>
<td>-1.65</td>
<td>+0.18</td>
<td>-1.90</td>
<td>-1.74</td>
<td>-1.89</td>
<td>-1.68</td>
<td>-1.48</td>
<td>-1.22</td>
<td>-2.10</td>
</tr>
<tr>
<td>2-MeTHF</td>
<td>-0.30</td>
<td>+1.33</td>
<td>-0.97</td>
<td>+1.34</td>
<td>-1.92</td>
<td>-1.75</td>
<td>-1.87</td>
<td>-1.41</td>
<td>-1.10</td>
<td>-0.63</td>
<td>-a</td>
</tr>
<tr>
<td>1,2-DME</td>
<td>-0.17</td>
<td>+1.29</td>
<td>-1.30</td>
<td>-0.08</td>
<td>-2.03</td>
<td>-1.84</td>
<td>-1.99</td>
<td>-1.81</td>
<td>-1.51</td>
<td>-1.26</td>
<td>-1.90</td>
</tr>
<tr>
<td>CPME</td>
<td>+1.26</td>
<td>+2.01</td>
<td>+0.75</td>
<td>+1.94</td>
<td>-1.54</td>
<td>-1.73</td>
<td>-1.57</td>
<td>+0.21</td>
<td>+1.06</td>
<td>+1.46</td>
<td>-a</td>
</tr>
<tr>
<td>Et$_2$O</td>
<td>+1.38</td>
<td>+1.96</td>
<td>+0.71</td>
<td>+1.78</td>
<td>-1.57</td>
<td>-1.66</td>
<td>-1.45</td>
<td>+0.50</td>
<td>+1.29</td>
<td>+1.64</td>
<td>-2.01</td>
</tr>
<tr>
<td>MTBE</td>
<td>+1.54</td>
<td>+1.98</td>
<td>+1.76</td>
<td>+2.14</td>
<td>+1.81</td>
<td>+0.54</td>
<td>+1.69</td>
<td>+2.08</td>
<td>+2.03</td>
<td>+2.04</td>
<td>-1.93</td>
</tr>
<tr>
<td>EtOAc</td>
<td>+0.74</td>
<td>+1.55</td>
<td>+0.24</td>
<td>+1.35</td>
<td>-1.47</td>
<td>-1.46</td>
<td>-1.34</td>
<td>+0.20</td>
<td>+0.78</td>
<td>+1.19</td>
<td>-a</td>
</tr>
</tbody>
</table>

a Not measured
Table S2. Structures and screw-sense induction properties (g_{abs}) of polymers with varied degrees of polymerization

![Screw-sense induction diagram]

Polymers $5(n)$ ($n = 20, 40, 60, 80, 100, 150, 200, \text{ and } 300$)

<table>
<thead>
<tr>
<th>n</th>
<th>1,2-DME</th>
<th>MTBE</th>
<th>CPME</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>–1.13</td>
<td>+1.03</td>
<td>–0.51</td>
</tr>
<tr>
<td>40</td>
<td>–1.86</td>
<td>+1.49</td>
<td>–1.40</td>
</tr>
<tr>
<td>60</td>
<td>–1.96</td>
<td>+1.76</td>
<td>–1.76</td>
</tr>
<tr>
<td>80</td>
<td>–2.16</td>
<td>+1.94</td>
<td>–1.96</td>
</tr>
<tr>
<td>100</td>
<td>–2.20</td>
<td>+1.95</td>
<td>–2.03</td>
</tr>
<tr>
<td>150</td>
<td>–2.28</td>
<td>+2.11</td>
<td>–2.12</td>
</tr>
<tr>
<td>200</td>
<td>–2.31</td>
<td>+2.10</td>
<td>–2.13</td>
</tr>
<tr>
<td>300</td>
<td>–2.33</td>
<td>+2.10</td>
<td>–2.19</td>
</tr>
</tbody>
</table>

5. References