Supplementary Information

Diagnosing the miR-141 Prostate Cancer Biomarker Using Nucleic Acid-Functinoalized CdSe/ZnS QDs and Telomerase

Amily Fang-ju Jou,^a Chun-Hua Lu,^b Yen-Chuan Ou,^{*c} Shian-Shiang Wang,^c Shih-Lan Hsu,^d Itamar Willner^{*b} and Ja-an Annie Ho^{*a}

^{*a*} Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science & Technology, National Taiwan University, Taipei 10617, Taiwan. E-mail: jaho@ntu.edu.tw

^b Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email: willnea@vms.huji.ac.il

^c VACRS Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan. Email: ycou228@gmail.com

^d Department of Education and Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan.

Email: willnea@vms.huji.ac.il and jaho@ntu.edu.tw

Optimization on the performance of the sensing platform

To investigate the optimal amount of (1)-modified QDs participated in the amplified detection of miR-141, the fluorescence spectra were recorded after 1 hr interaction of variable concentrations of (1)-modified QDs (0, 2.1, 4.2, 8.4, 16.7, 33.3, and 50 nmol) with miR-141, 100 nM. As shown in Fig. S1A, the fluorescence responses intensify with the increased amount of (1)-modified QDs, leveling off to a saturation value ca. 33.3 nmol. Moreover, the effect of DSN on the DSN-stimulated catalyticcleavage was conducted. The fluorescence responses were recorded while 0, 12.5, 25, 50, 100, 250 U/mL of DSN were added to interact with 100 nM miR-141 for 1 hour. Fig. S1B depicts comparable fluorescence response in groups containing 100, 150 U/mL and 250 U/mL of DSN (P>0.02), suggesting 100 U/mL of DNS issufficientto implement our analytical procedure. In addition to (1)-modified QDs and DSN, the reaction temperature plays a crucial role in achieving efficient biocatalytical cleavage. Combinations consisting of variable (1)-modified QDs, DSN, and the reaction temperature were evaluated for theirsensing effectiveness. As shown in Fig. S1C, the combinations of 33.3 nmol of (1)modified QDs and 100 U/mL of DSN at three different reaction temperatures (50 °C, 55 °C and 60°C) validate the premier fluorescence responses, suggestingthat 33.3 nmol of (1)-modified QDs and 100 U/mL of DNS represent the optimized concentrations to be used. Furthermore, 55°C was found to be the best reaction temperature, and thus it was chosen as optimum and used throughout the study.

Fig. S1.The effects of the amount of the (1)-modified QDs, the concentration of DSN, and the reaction temperature, on the performance of the sensing platform. (A) Fluorescence spectra observed upon interacting different amounts of (1)-modified QDs with miR-141, 1×10^{-7} M, and DSN, 0.2 U. (B) Fluorescence spectra corresponding to the (1)-functionalized QDs system upon interacting different concentrations of DSN with (1)-modified QDs, 33.3 nmol, miR-141, 1×10^{-7} M. (C) Fluorescence spectra corresponding to the (1)-functionalized QDs system upon reacting with different combinations of (1)-modified QDs and DSN under varied reaction temperatures with miR-141, 1×10^{-7} M. All error bars in the figures indicate standard deviations using N = 3 experiments.

	BHQ DSN Analyte R	BHQ ecycling BHQ	H ₂ Q ₂ H ₂ Q ₂ Luminol	H ₂ O H ₂ O H ₂ O H ₂ O H ₂ O H ₂ O H ₂ O	Ab ₁ Ab	H ₂ O ₂ + TMB _{red}
	Healthy	Patient	Healthy	Patient	Healthy	Patient
Subject 1	$5.1 \times 10^{-12} \mathrm{M}$	$6.4 \times 10^{-10} \mathrm{M}$	$4 \times 10^{-13} \text{ M}$	$8.1 \times 10^{-12} \text{ M}$	<LOD ^b	$2.5 \times 10^{-10} \text{ M}$
Subject 2	$8 \times 10^{-12} \mathrm{M}$	$3.8 \times 10^{-11} \text{ M}$	$3.9 \times 10^{-13} \text{ M}$	$5.3 \times 10^{-13} \text{ M}$	<LOD ^b	$1.8 \times 10^{-9} M$
Subject 3	<LOD ^a	$9.4 \times 10^{-11} \text{ M}$	$3.4 \times 10^{-13} \text{ M}$	6.8×10 ⁻¹³ M	$1.2 \times 10^{-10} \text{ M}$	2.0×10 ⁻⁹ M
Subject 4	$5.3 \times 10^{-12} \mathrm{M}$	$3.2 \times 10^{-10} \text{ M}$	4.0×10 ⁻¹³ M	$1.9 \times 10^{-12} \text{ M}$	<LOD ^b	$1.7 \times 10^{-9} M$
Subject 5	<LOD ^a	$1.3 \times 10^{-7} \text{ M}$	$3.8 \times 10^{-13} \text{ M}$	$2.2 \times 10^{-9} \text{ M}$	$8.1 \times 10^{-11} \text{ M}$	$2.7 \times 10^{-10} \text{ M}$
Subject 6	<LOD ^a	$3.1 \times 10^{-10} \text{ M}$	$3.5 \times 10^{-13} \text{ M}$	$1.0 \times 10^{-12} \text{ M}$	$1.8 \times 10^{-10} \text{ M}$	$2.0 \times 10^{-9} \text{ M}$
Subject 7	<LOD ^a	2.0×10 ⁻⁸ M	4.1×10 ⁻¹³ M	$7.8 \times 10^{-11} \text{ M}$	9.0×10 ⁻¹¹ M	$1.7 \times 10^{-9} M$
Subject 8	<LOD ^a	1.1×10 ⁻⁷ M	3.9×10 ⁻¹³ M	$1.3 \times 10^{-9} M$	$7.5 \times 10^{-11} \text{ M}$	$4.7 \times 10^{-10} \text{ M}$
Subject 9	<LOD ^a	$1.7 \times 10^{-7} M$	$3.8 \times 10^{-13} \text{ M}$	$3.9 \times 10^{-9} M$	$1.4 \times 10^{-10} \text{ M}$	$4.0 \times 10^{-10} \text{ M}$
Subject 10	< LOD ^a		$3.5 \times 10^{-13} M$		$7.1 \times 10^{-11} M$	
Average concentration in serum	4.3×10 ⁻¹³ M ^c	$3.4 \times 10^{-9} M^{c}$	$2.6 \times 10^{-14} \text{ M}^{c}$	$5.8 \times 10^{-11} \text{M}^{c}$	$1.1 \times 10^{-10} M$	$8.6 \times 10^{-10} M$
Standard deviation in serum	1.1×10 ⁻¹³ M	4.9×10 ⁻⁹ M	$1.6 \times 10^{-15} \mathrm{M}$	9.7×10 ⁻¹¹ M	4.1×10 ⁻¹¹ M	$8.0 \times 10^{-10} M$

Table S1. miR-141 and PSA levels in healthy individuals and prostate cancer carriers.

^aDetection limit for fluorescence assay is calculated to be 1.7×10^{-12} M, ^bDetection limit for PSA immunoassay is calculated to be 3.5×10^{-11} M, ^cAverage concentration in serum samples is calculated by dividing (the mean of all the subjects) by (a concentration factor of 14.3).