Supplemental Information

Platinum-decorated Carbon Nanotubes for Hydrogen Oxidation and Proton Reduction in Solid Acid Electrochemical Cells

V. Sara Thoia, Robert E. Usiskina, and Sossina. M. Hailea

Figure S1. Schematic of the electrospray apparatus.1

Figure S2. TGA profiles of 30 (red) and 46 wt\% (black) Pt-CNTs under a flow of air, Ar, and 2.04\% H\textsubscript{2} bal at 200 mL min-1 and a heating rate of 10 °C min-1. The negligible mass change (<1\%) upon switched from oxidizing to reducing atmosphere indicates there is negligible formation of PtO\textsubscript{x}.

Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014
Figure S3. Cross-sectional SEM analysis of a) layered-composite and b) co-sprayed composite of 30 wt% Pt-CNT-CsH₂PO₄ from Strategies 1 and 2, respectively, illustrated in Scheme 2 in the main text. The straw-like layer is the carbon paper electrode and the thin white layer is the CsH₂PO₄-based electrode.

Figure S4. Symmetric cell impedance measurements of electrosprayed commercial CNTs (as received). Measurements are performed at 240 °C in a dynamic atmosphere of 0.4 atm H₂O and balance H₂ supplied at a gas velocity of 6 cm min⁻¹ (inset: equivalent circuit used for fitting).