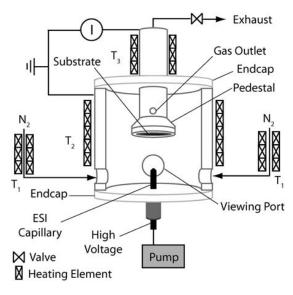
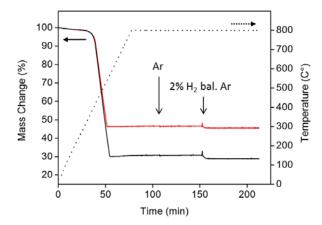
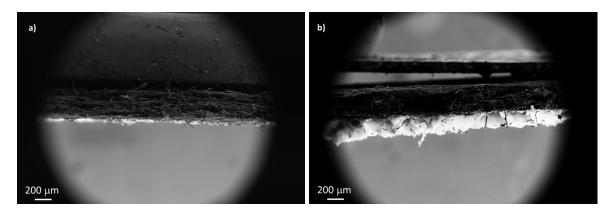
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2014

Supplemental Information

Platinum-decorated Carbon Nanotubes for Hydrogen Oxidation and Proton Reduction in Solid Acid Electrochemical Cells

V. Sara Thoi^a, Robert E. Usiskin ^a, and Sossina. M. Haile^a

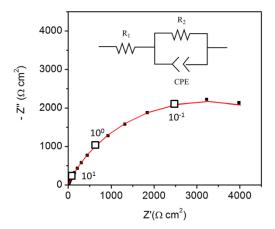

Figure S1. Schematic of the electrospray apparatus.¹

Figure S2. TGA profiles of 30 (red) and 46 wt% (black) Pt-CNTs under a flow of air, Ar, and 2.04% H₂ bal at 200 mL min⁻¹ and a heating rate of 10 °C min⁻¹. The negligible mass change (< 1%) upon switched from oxidizing to reducing atmosphere indicates there is negligible formation of PtO_x.

Figure S3. Cross-sectional SEM analysis of a) layered-composite and b) co-sprayed composite of 30 wt% Pt-CNT-CsH₂PO₄ from Strategies 1 and 2, respectively, illustrated in Scheme 2 in the main text. The straw-like layer is the carbon paper electrode and the thin white layer is the CsH₂PO₄-based electrode.

Figure S4. Symmetric cell impedance measurements of electrosprayed commercial CNTs (as received). Measurements are performed at 240 °C in a dynamic atmosphere of 0.4 atm H_2O and balance H_2 supplied at a gas velocity of 6 cm min⁻¹ (inset: equivalent circuit used for fitting).

1. A. Varga, N. A. Brunelli, M. W. Louie, K. P. Giapis and S. M. Haile, *J. Mater. Chem.*, 2010, **20**, 6309.