Journal Name

ARTICLE

Supporting Information: Emptying and Filling A Tunnel Bronze

Peter M. Marley,^{*a*} Tesfaye A. Abtew,^{*b*} Katie E. Farley,^{*a*} Gregory A. Horrocks,^{*a*} Robert V.Dennis,^{*a*} Peihong Zhang^{*b*} and Sarbajit Banerjee^{*a*},

SUPPORTING INFORMATION.

<i>a</i> =	= 15.38202(12) A, b = 3.6141	121(13) A, $c = 10.06\gamma^2 = 2.240$	β (6) A, $\beta = 109.7136(5)$ (6) Rw = 6.89%)°, Volume = $526.9599($	6) A^{3}
Atom	x	<i>y</i>	z	Occupancy	Uiso
V(1)	0.33747(7)	0.0	0.10029(12)	1.0	0.00507(31)
V(2)	0.11636(8)	0.0	0.11883(12)	1.0	0.00724(31)
V(3)	0.28796(8)	0.0	0.40950(13)	1.0	0.00829(35)
0(1)	0.0	0.0	0.0	1.0	0.0064(15)
O(2)	0.31515(26)	0.5	0.05477(35)	1.0	0.0021(14)
0(3)	0.13415(28)	0.5	0.0786(4)	1.0	0.0017(11)
O(4)	0.44028(28)	0.0	0.2175(4)	1.0	0.0083(10)
O(5)	0.26326(24)	0.0	0.2223(4)	1.0	0.0016(11)
O(6)	0.10763(28)	0.0	0.2719(5)	1.0	0.0145(12)
O(7)	0.25679(25)	0.5	0.4261(4)	1.0	0.0065(11)
O(8)	0.40013(27)	0.0	0.4765(4)	1.0	0.0057(10)

$a = 15.27498(16)$ Å, $b = 3.603860(17)$ Å, $c = 10.09771(7)$ Å, $\beta = 110.0222(6)$ °, Volume = 522.271(6) Å ³ $\gamma^2 = 5.357$ Rw = 9.87%					
Atom	x	<i>y</i>	z	Occupancy	Uiso
V(1)	0.33958(10)	0.0	0.10514(16)	1.0	0.0077(4)
V(2)	0.11672(10)	0.0	0.11665(15)	1.0	0.0050(4)
V(3)	0.29111(11)	0.0	0.41498(16)	1.0	0.0086(4)
O(1)	0.0	0.0	0.0	1.0	0.0099(14
O(2)	0.81363(34)	0.0	0.0562(5)	1.0	0.0050(14
O(3)	0.6336(4)	0.0	0.0740(5)	1.0	0.0044(12) 0.0063(13) 0.0018(14)
O(4)	0.43648(33)	0.0	0.2186(5)	1.0	
O(5)	0.26572(32)	0.0	0.2229(5)	1.0	
O(6)	0.1138(4)	0.0	0.2743(5)	1.0	0.0187(16
O(7)	0.75809(34)	0.0	0.4266(5)	1.0	0.0026(13
O(8)	0.3981(4)	0.0	0.4783(6)	1.0	0.0165(15
Ag(1)	0.0023(7)	0.0	0.4101(10)	0.0600(9)	0.0029(8)

Table S2. Unit cell parameters and atomic coordinates for the $\zeta\text{-}V_2O_5$ structure.

Table S3. Coordination environment around the vanadium atoms.

V-O	VO	β -Ag _x V ₂ O ₅	ζ -V ₂ O ₅
Polyhedra	V-0	Distance (Å)	Distance (Å)
	V(1)-O(3)	1.991(4)	1.987(5)
V(1)O ₆ Octahedra	V(1)-O(5)	1.939(4)	1.899(5)
	V(1)-O(4)	1.623(4)	1.530(5)
	V(1)-O(2)	1.8674(9)	1.8747(14)
	V(1)-O(2)	1.8674(9)	1.8747(14)
	V(1)-O(2)	2.340(4)	2.349(5)
	V(2)-O(1)	1.7861(12)	1.7686(14)
	V(2)-O(6)	1.591(4)	1.608(5)
V(2) O Ostahadra	V(2)-O(3)	1.8919(11)	1.8908(16)
$V(2)O_6$ Octanedra	V(2)-O(3)	1.8919(11)	1.8908(16)
	V(2)-O(5)	2.146(4)	2.158(5)
	V(2)-O(2)	2.326(4)	2.334(5)
	V(3)-O(5)	1.793(4)	1.843(5)
V(3)O ₅ Square Pydramid	V(3)-O(8)	1.627(4)	1.538(5)
	V(3)-O(7)	1.8913(12)	1.8856(16)
	V(3)-O(7)	1.8913(12)	1.8856(16)
	V(3)-O(7)	1.996(4)	1.987(5)

Figure S1. The leaching of Ag ions from brown—green β -Ag_{0.33}V₂O₅ (central vial) results in restoration of the orange—yellow coloration typical of vanadium in the +5 oxidation state (fourth from the left). Reinsertion of lithium into the tunnel structure further changes the color from orange to black as a result of partial reduction of the ζ -V₂O₅ framework to β -Li_xV₂O₅.

Figure S2. V $2p_{3/2}$ XPS spectra acquired for β -Ag_xV₂O₅ (black line) and ζ -V₂O₅ (blue line); the main feature is attributed to vanadium in a +5 oxidation state, whereas the shoulder is a result of remnant V⁴⁺ sites. Upon removal of silver the V⁴⁺ shoulder is decreased confirming the oxidation of vanadium as also visually observed in Figure S1.

Figure S3. The onset of the conduction band, unlike α -V₂O₅, is not anisotropic and is illustrated in the orbital projected DOS for each V(1), V(2), and V(3) atom (a,b,c respectively). The lowest energy conduction band states are comprised of a number of orbitals that include: V(1) 3d_{xy}, V(1) 3d_{zy}, V(2) 3d_{zy}, and V(3) 3d_{zy}. The complexity of the crystal structure inherently reduces the anisotropic nature of the lowest energy conduction band states in ζ -V₂O₅.

Table S4. Unit cell parameters and atomic positions after lithiation of ζ -V₂O₅.

$a = 15.1653(4)$ Å, $b = 3.63068(4)$ Å, $c = 10.12429(7)$ Å, $\beta = 106.4673(25)$ °, Volume = 534.581(20) Å ³ $\gamma^2 = 3.067$ Rw = 9.11%						
Atom	x	<i>y</i>	z	Occupancy	Uiso	
V(1)	0.33433(25)	0.0	0.0858(4)	1.0	0.0199(13	
V(2)	0.11015(24)	0.0	0.1153(4)	1.0	0.0026(14	
V(3)	0.28539(35)	0.0	0.3932(6)	1.0	0.0416(16)	
O(1)	0.0	0.0	0.0	1.0	0.0065(14	
O(2)	0.8007(8)	0.0	0.0334(13)	1.0	0.005(4)	
O(3)	0.6209(7)	0.0	0.0916(11)	1.0	0.0085(25	
O(4)	0.4365(9)	0.0	0.2186(5)	1.0	0.0063(13)	
O(5)	0.2770(9)	0.0	0.2276(14)	1.0	0.021(5)	
O(6)	0.1138(4)	0.0	0.2743(5)	1.0		
O(7)	0.7440(9)	0.0	0.4312(13)	1.0	0.012(4)	
O(8)	0.3943(8)	0.0	0.4630(12)	1.0	0.0145(15	
Ag(1)	0.0023	0.0	0.4101	0.0600	0.0029	
Li(1)	0.0023	0.5	0.4101	1.0	0.025	

Figure S4. (a) Selected area electron diffraction of the nanowire in the inset. The single crystalline nature of the nanowire is illustrated. Reflections are indexed to the refined β -Li_xV₂O₅ crystal structure from the high-resolution synchrotron powder diffraction data. (b) A SEM image of the nanowires upon re-incorporating Li-ions into the tunnel structure showing that the nanowire morphology is retained.

Figure S5. (a) SEM image of the β -Mg_xV₂O₅ nanowires illustrating retention of the nanowire morphology upon reaction of ζ -V₂O₅ with Mg nanoparticles. (b) EDX spectrum corresponding to the image in (a) showing incorporation of Mg into the tunnel structure. The residual silver is a result of AgCl that is also observed in the XRD patterns after the initial removal of Ag-ions from the β -Ag_xV₂O₅ starting compound.