Supplementary Information

Compact, hydrophilic, lanthanide-binding tags for paramagnetic NMR spectroscopy

M. D. Lee,^{*a*} C.-T. Loh,^{*b*} J. Shin,^{*a*} S. Chhabra,^{*a*} M. L. Dennis,^{*a*} G. Otting,^{*b*} J. D. Swarbrick^{*a*}* and B. Graham^{*a*}*

Contents

Syntheses of C5 and C6	S2
¹ H NMR spectra of Yb ^{$3+$} complexes of C5–C7	S4
High-resolution mass spectra of Yb^{3+} complexes of C5–C7	S6
GB1 expression, purification and tagging.	S 8
HPPK expression, purification and tagging.	S 8
¹⁵ N-HSQC spectra of C5–C8 tagged ubiquitin A28C	S9
Experimental PCSs measured for C5–C8 tagged ubiquitin A28C	S12
$\Delta \chi$ -Tensor parameters for C5–C8 tagged ubiquitin A28C (common fits)	S16
¹⁵ N-HSQC spectra of C7 tagged ubiquitin A28C at pH 6.5	S17
Correlations between PCSs of C7 tagged ubiquitin A28C at pH 8.0 and pH 6.5	S17
Plots of measured PCSs vs. residue number for C5–C8 tagged ubiquitin A28C	S18
Comparison of $\Delta \chi$ -tensor orientations and individual metal positions determined for	
different metal complexes of C1, C7 and C8 bound to ubiquitin A28C	S19
Temperature titration of C7 tagged ubiquitin A28C	S20
Experimental ${}^{1}D_{\text{HN}}$ RDCs for C7 and C8 tagged ubiquitin A28C loaded with Tm ³⁺	S21
Alignment tensor parameters for C7 and C8 tagged ubiquitin A28C loaded with Tm ³⁺	S22
Equation S1	S22
¹⁵ N-HSQC spectra of C7 and C8 tagged GB1 Q32C	S23
Correlations between experimental and back-calculated PCSs for C7 and C8 tagged GB1	
Q32C and C7 tagged HPPK S112C/C80A	S24
Δχ-Tensor parameters for C7 and C8 tagged GB1 Q32C (common fits)	S24
Experimental PCSs measured for C7 and C8 tagged GB1 Q32C	S25
¹⁵ N-HSQC spectra of C7 tagged HPPK S112C/C80A	S27
Structure of HPPK and PCS-determined metal ion position for C7 tagged HPPK	
S112C/C80A loaded with Tm ³⁺	S27
Experimental PCSs measured for C7 tagged HPPK S112C/C80A loaded with Tm ³⁺	S28
¹ H and ¹³ C NMR spectra of novel compounds	S29
Analytical HPLC traces of new lanthanide-binding tags	S43
References	S44

Syntheses of C5 and C6

N-(2-(pyridin-2-yldisulfanyl)ethyl)-2-(4,7,10-tris((S)-2-hydroxypropyl)-1,4,7,10-tetraazacyclododecan-1-

yl)acetamide, trifluoroacetate salt (C5). (15,45,75)-1,4,7-*tris*(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (468 mg, 1.35 mmol), 2-chloro-N-(2-(pyridin-2-yldisulfanyl)ethyl)acetamide (532 mg, 2.02 mmol) and DIPEA (352 µL, 2.02 mmol) were dissolved in ACN (8 mL) and stirred at room temperature for 72 h. The solution was concentrated under reduced pressure and the resulting residue purified by reverse-phase HPLC (0.1% TFA and a 5–50% ACN gradient on a C18 preparative column). Fractions containing pure product were lyophilised to yield the trifluoroacetate salt of C5 as a yellow oil. Yield: 792 mg (61 %, assuming a pentatrifluoroacetate salt). ¹H NMR (400 MHz, D₂O) δ 8.60 (m, 1H), 8.37 (m, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 7.76 (m, 1H), 4.18 (br, 2H, CHOH), 4.06 (m, 1H, CHOH), 3.68-3.43 (m, 7H), 3.39 – 3.11 (m, 12H), 3.06 (br, 2H), 2.98 (m, 3H), 2.79 (m, 2H), 2.54 (m, 2H), 1.17 (br, 6H, CH₃), 1.08 (d, *J* = 6.3 Hz, 3H, CH₃). ¹³C NMR (101 MHz, D₂O) δ 172.27 (*C*=O), 156.11 (*C*), 144.35 (CH), 143.86 (CH), 124.66 (CH), 123.66 (CH), 63.90 (CHOH), 61.05 (CHOH), 60.69 (CHOH), 60.56, 60.24, 59.49, 54.79, 51.42, 50.65, 50.27, 50.04, 49.01, 46.62, 46.15, 37.72, 37.46, 36.33 (previous 14 peaks, CH₂), 20.12 (CH₃), 20.01 (CH₃), 19.95 (CH₃). HRMS (ESI) *m/z* cal'd for [M+H]⁺ C₂₆H₄₉N₆O₄S₂: 573.3251, found: 573.3258. Analytical HPLC: *t_R* 4.27 min, 97% (254 nm).

Dimethyl 4-(((methylsulfonyl)oxy)methyl)pyridine-2,6-dicarboxylate (4). Dimethyl 4-(hydroxymethyl)pyridine-2,6-dicarboxylate (638 mg, 2.83 mmol) and DIPEA (1480 μ L, 8.49 mmol) was dissolved in anhydrous DCM (55 mL). Methanesulfonyl chloride (330 μ L, 4.25 mmol) was added dropwise to the solution over an ice bath. After complete addition, the solution was allowed to warm to room temperature and stirred for 30 min. The solution was washed with H₂O (2 x 50 mL) and the organic layer was dried with anhydrous MgSO₄ and concentrated under reduced pressure to yield **4** as a white solid that was used without further purification. Yield: 864 mg (quant). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 2H, H3, H5), 5.36 (s, 2H, CH₂), 4.04 (s, 6H, OCH₃), 3.14 (s, 3H, SCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 164.77 (*C*=O), 149.07 (*C*2, *C6*), 146.10 (*C*4), 126.09 (*C*3, *C*5), 67.18 (CH₂), 53.57 (OCH₃), 38.30 (SCH₃). LC-MS: *m/z* (ESI, 20 V) 304.1 (100%) [M+H]⁺.

Dimethyl 4-((*tert***-butylthio)methyl)pyridine-2,6-dicarboxylate (5).** *Tert*-butylthiol (410 µL, 3.54 mmol) was added dropwise to a mixture of NaH (60% in mineral oil, 141 mg, 3.54mmol) in DMF (5 mL). The thiolate solution was then added dropwise to a solution of **4** (858 mg, 2.83 mmol) in DMF (7 mL). The solution was stirred for 5 min at room temperature. Et₂O (100 mL) was added and the solution washed with H₂O (2 x 100 mL). The combined aqueous phase was washed with Et₂O (50 mL) and the combined organic layers dried with anhydrous MgSO₄ and filtered before concentrating by evaporating under a gentle N₂ flow. The resulting residue was purified by silica flash chromatography (30% EtOAc in PET Spirits) to yield **5** as a white solid. Yield: 399 mg (47%). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 2H, *H*3, *H*5), 3.98 (s, 6H, OC*H*₃), 3.81 (s, 2H, *CH*₂), 1.30 (s, 9H, C(*CH*₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.11 (*C*=O), 151.97 (*C*4), 148.44 (*C*2, *C*6), 128.41 (*C*3, *C*5), 53.26 (OCH₃), 43.91 (*C*(CH₃)₃), 32.35 (*C*H₂), 30.94 (C(*C*H₃)₃). LC-MS: *m/z* (ESI, 20 V) 298.2 (100%) [M+H]⁺. R_f(30% EtOAc in PET Spirits): 0.28.

Methyl 4-((*tert***-butylthio)methyl)-6-(hydroxymethyl)picolinate (6).** Sodium borohydride (104 mg, 2.74 mmol) was added slowly to a stirring solution of **5** (678 mg, 2.28 mmol) in MeOH (60 mL) and DCM (20 mL) over an ice bath. The solution was allowed to warm to room temperature. Further portions of sodium borohydride (50 mg, 1.32 mmol each) were added after 1 and 1.5 h. After 2 h the reaction was concentrated under reduced pressure. EtOAc (50 mL) was added to the resulting residue and washed with H₂O (2 x 50 mL). The organic layer was dried with anhydrous MgSO₄ and concentrated under reduced pressure. The resulting oil was purified by silica flash chromatography (40% EtOAc in PET Spirits) to yield **6** as a white solid. Yield: 395 mg (64%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 2H, H3), 7.45 (s, 1H, H5), 4.83 (s, 2H, OCH₂), 3.98 (s, 3H, OCH₃), 3.77 (s, 2H, SCH₂), 1.33 (s, 9H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.48 (C=O), 160.60 (C6), 151.05 (C4), 147.10 (C2), 124.57 (C3), 124.42 (C5), 64.61 (OCH₂), 53.05 (OCH₃), 43.80 (C(CH₃)₃, 32.52 (SCH₂), 31.00 (C(CH₃)₃). LC-MS: *m/z* (ESI, 20 V) 270.2 (100%) [M+H]⁺. R_f (40% EtOAc in PET Spirits): 0.14.

Methyl 4-((*tert***-butylthio)methyl)-6-(((methylsulfonyl)oxy)methyl)picolinate (7).** Compound 6 (402 mg, 1.49 mmol) and DIPEA (779 μ L, 4.47 mmol) was dissolved in anhydrous DCM (20 mL). Methanesulfonyl chloride (231 μ L, 2.98 mmol) was added dropwise to the solution over an ice bath. After complete addition, the solution was allowed to warm to room temperature and stirred for 15 min. The solution was washed with H₂O (2 x 20 mL) and the organic layer was

dried with anhydrous MgSO₄ and concentrated under reduced pressure. The resulting oil was purified by silica flash chromatography (40% EtOAc in PET Spirits) to yield 7 as an orange oil. Yield: 401 mg (77%). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H, H3), 7.64 (s, 1H, H5), 5.38 (s, 2H, CH₂OS), 3.97 (s, 3H, OCH₃), 3.78 (s, 2H, CH₂S), 3.12 (s, 3H, SCH₃), 1.32 (s, 9H, C(CH₃)₃).¹³C NMR (101 MHz, CDCl₃) δ 165.20 (*C*=O), 154.59 (C6), 151.57 (C4), 147.97 (C2), 125.54 (C3, C5), 71.03 (CH₂OS), 53.12 (OCH₃), 43.85 (C(CH₃)₃), 38.13 (SCH₃), 32.40 (CH₂S), 30.94 (C(CH₃)₃).LC-MS: *m/z* (ESI, 20 V) 348.1 (100%) [M+H]⁺. R_f(40% EtOAc in PET Spirits): 0.28.

Methyl 6-((1,4,7,10-tetraazacyclododecan-1-yl)methyl)-4-((*tert***-butylthio)methyl)picolinate (8). Compound 7 (451 mg, 1.30 mmol) dissolved in CHCl₃ (30 mL) was added dropwise to a solution of 1,4,7,10-tetraazacyclododecane (1.344 g, 7.80 mmol) in CHCl₃ (100 mL) and stirred overnight at room temperature. The solution was washed with 1 M NaOH (1 x 100 mL) and H₂O (3 x 100 mL) to remove excess 1,4,7,10-tetraazacyclododecane. The organic layer was dried with anhydrous MgSO₄ and concentrated under reduced pressure to yield 8** as a colourless oil. Yield: 561 mg (quantitative). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 1.4 Hz, 1H, *H*3), 7.64 (d, *J* = 1.4 Hz, 1H, *H*5), 3.84 (s, 3H, OC*H*₃), 3.73 (s, 2H, NC*H*₂Ar), 3.64 (s, 2H, SC*H*₂), 2.73 – 2.67 (m, 4H), 2.54 (m, 8H), 2.48 – 2.44 (m, 4H), 1.20 (s, 9H, C(C*H*₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 165.59 (*C*=O), 160.79 (*C*6), 149.95 (*C*4), 147.12 (*C*2), 126.36 (*C*5), 124.15 (*C*3), 60.66 (NCH₂Ar), 52.69 (OCH₃), 51.81, 47.03, 46.33, 45.09, 43.25 (*C*(CH₃)₃), 32.31 (SCH₂), 30.78 (C(CH₃)₃). LC-MS: *m/z* (ESI, 20 V) 368.20 [M-^tBu+H]⁺ (100%), 424.40 [M+H]⁺ (66%).

Methyl 4-((*tert*-butylthio)methyl)-6-((4,7,10-*tris*((S)-2-hydroxypropyl)-1,4,7,10-tetraazacyclododecan-1yl)methyl)picolinate (9). Compound 8 (550 mg, 1.30 mmol) was dissolved in MeOH (30 mL) and (S)-propylene oxide (546 μL, 7.80 mmol) was added. The solution was stirred at room temperature for 48 h. Solvent and excess (S)propylene oxide was removed under reduced pressure to yield 9 as colourless oil that was used without further purification. Yield: 777 mg (quant.). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 1.2 Hz, 1H, H3), 7.45 (d, J = 1.2 Hz, 1H, H5), 5.02 (br, 2H, OH), 4.40 (br, 1H, OH), 4.08-4.04 (br, 2H, CHOH), 4.01 (d, J = 13.8 Hz, NCH₂Ar), 3.93 (m, 4H, OCH₃ and CHOH), 3.86 (d, J = 13.3 Hz, 1H, CH₂S), 3.78 (d, J = 13.3 Hz, 1H, CH₂S), 3.73 (d, J = 13.9 Hz, 1H, NCH₂Ar), 3.16 (m, 2H), 2.93 (m, 2H), 2.82 (m, 4H), 2.52 (m, 1H), 2.38 (m, 1H), 2.27 – 1.80 (m, 12H), 1.31 (s, 9H, C(CH₃)₃), 1.23 (d, J = 6.1 Hz, 3H, CHCH₃), 1.12 (d, J = 6.1 Hz, 3H, CHCH₃), 0.90 (d, J = 6.1 Hz, 3H, CHCH₃).¹³C NMR (101 MHz, CDCl₃) δ 165.95 (C=O), 157.69 (C6), 150.62 (C4), 147.55 (C2), 128.41 (C5), 124.34 (C3), 62.89 (CHCH₃), 62.83 , 62.58 (CHCH₃), 62.32 (CHCH₃), 61.80, 61.24, 59.02, 52.83 (OCH₃), 52.60, 51.79, 51.42, 50.24, 50.15, 50.11, 49.86, 47.45, 43.62 (C(CH₃)₃), 32.32 (CH₂S), 31.00 (C(CH₃)₃), 22.05 (CHCH₃), 21.77 (CHCH₃), 21.68 (CHCH₃). LC-MS: *m/z* (ESI, 20 V): 299.79 [M+2H]²⁺ (100%), 598.50 [M+H]⁺ (9%).

$\label{eq:constraint} 4-(Mercaptomethyl)-6-((4,7,10-\textit{tris}((S)-2-hydroxypropyl)-1,4,7,10-\textit{tetraazacyclododecan-1-yl}) methyl) picolinic (S)-2-hydroxypropyl)-1,4,7,10-\textit{tetraazacyclododecan-1-yl}) methyl) picolinic (S)-2-hydroxypropyl) methyl (S)-2-hydroxypropyl (S)-2-hydroxypropyl methyl (S)-2-hydroxypropyl (S)-2-hydroxypropyl methyl (S)-2-hydroxypropyl (S)-2-hydroxypropyl methyl (S)-2-hydroxypropyl (S)-2-hydroxypropyl (S)-2-hydroxypropyl (S)-2-hydroxypropyl (S)-2-hydroxypropyl (S)-2-hydroxypropyl (S)-2-h$

acid, trifluoroacetate salt (C6). Compound 9 (184 mg, 0.31 mmol) was dissolved in HCl (32%, 10 mL) and heated to reflux for 4 h. Solvent was removed under reduced pressure and the resulting residue purified by reverse-phase HPLC (0.1% TFA and a 5–100% ACN gradient over 20 min on a C18 preparative column). Fractions containing pure product were lyophilised to afford C6 as a white residue. Yield: 139 mg (85%).¹H NMR (400 MHz, D₂O) δ 8.29 (d, *J* = 1.5 Hz, 1H, *H*3), 7.98 (d, *J* = 1.5 Hz, 1H, *H*5), 4.44 (br, 1H, *CHO*H), 4.29 (d, *J* = 14.0 Hz, 1H, NCH₂Ar), 4.23 – 4.14 (m, 1H, CHOH), 4.02 (br, 1H, CHOH), 3.95 (s, 2H, CH₂SH), 3.83 (d, *J* = 14.0 Hz, 1H, NCH₂Ar), 3.66 (m, 3H), 3.39 (m, 5H), 3.26 (m, 4H), 3.15 (d, *J* = 14.3 Hz, 1H), 3.00 (d, *J* = 12.8 Hz, 1H), 2.79 (m, 5H), 2.66 (m, 2H), 2.56 (d, *J* = 14.3 Hz, 1H), 1.35 (d, *J* = 4.5 Hz, 3H, CH₃), 1.15 (d, *J* = 6.3 Hz, 3H, CH₃), 0.91 (d, *J* = 4.6 Hz, 3H, CH₃).¹³C NMR (101 MHz, D₂O) δ 164.72 (*C*=O), 160.05 (C4), 151.65 (C6), 147.14 (C2), 130.01 (C5), 125.43 (C3), 63.03 (CHOH), 60.62 (CHOH), 59.87(CH₂), 59.55 (CHOH), 59.31, 58.72, 55.45, 50.48, 49.62, 49.39, 48.69, 47.34, 46.46, 45.56 (previous 10 signals CH₂), 26.82 (CH₂SH), 20.43 (CH₃), 19.57 (CH₃), 19.48(CH₃). HRMS (ESI) *m/z* cal'd for [M+H]⁺ C₂₅H₄₆N₅O₅S: 528.3220, found: 528.3207. Analytical HPLC: *t_R* 3.86 min, 97% (254 nm).

Figure S1. ¹H NMR spectrum of **C5-Yb**³⁺. The spectra were recorded at 25°C and pH 2 at a ¹H NMR frequency of 400 MHz.

Figure S2. ¹H NMR spectrum of C6-Yb³⁺. The spectrum was recorded at 25 °C and pH 2 at a ¹H NMR frequency of 400 MHz.

Figure S3. ¹H NMR spectrum of **C7-Yb**³⁺. The spectrum was recorded at 25 °C and pH 2 at a ¹H NMR frequency of 400 MHz.

Figure S4. High-resolution mass spectrum of C5-Yb³⁺.

Figure S5. High-resolution mass spectrum of C6-Yb³⁺.

Figure S6. High-resolution mass spectrum of $C7-Yb^{3+}$.

1
1

Complex	Chemical formula	Predicted masses (relative abundance) ^a
C5-Yb ³⁺	$[C_{26}H_{46}N_6O_4S_2Yb]^+$	744.2406 (100.0%), 742.2381 (68.6%), 743.2399 (50.7%), 741.2380
		(44.9%), 746.2443 (40.1%), 745.2439 (28.1%), 743.2414 (19.3%),
		744.2433 (14.3%), 742.2414 (12.6%), 747.2476 (11.3%)
C6-Yb ³⁺	$[C_{25}H_{43}N_5O_5SYb]^+$	699.2368 (100.0%), 697.2344 (68.6%), 698.2362 (50.7%), 696.2343
		(44.9%), 701.2406 (40.1%), 700.2402 (27.0%), 698.2377 (18.5%),
		699.2396 (13.7%), 697.2377 (12.1%), 702.2439 (10.8%)
C7-Yb ³⁺	$[C_{25}H_{45}N_5O_4S_2Yb]^+$	717.2297 (100.0%), 715.2272 (68.6%), 716.2290 (50.7%), 714.2271
		(44.9%), 719.2334 (40.1%), 718.2330 (27.0%), 716.2305 (18.5%),
		717.2324 (13.7%), 715.2305 (12.1%), 720.2367 (10.8%)
^a Only masse	es of the 10 most abund	dant predicted species are listed.

GB1 expression, purification and tagging

Uniformly ¹⁵N-labelled GB1 Q32C was expressed with a C-terminal His₆-tag using the pETMCSI T7 vector¹ in *E. coli* BL21(DE3) grown at 37 °C overnight in the presence of 100 mg/mL ampicillin. 10 mL of overnight culture were subsequently inoculated into 1 L minimal media containing 0.5 g/L ¹⁵N- ammonium chloride and 100 mg/L ampicillin. The cultures were grown at 37 °C and induced with 1 mM isopropyl- β -*D*-thiogalactopyranoside (IPTG) at OD₆₀₀ 0.6. After overnight expression at room temperature (16 h), cultures were harvested by centrifugation at 5,000 g for 20 min. Pellets were resuspended into buffer A (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 20 mM imidazole) and lysed using a French press at 12,000 psi. Cell lysates were then centrifuged for 1 h at 34,000 g. The supernatant was loaded onto a 5 mL Ni-NTA column (GE Healthcare, USA) and the proteins were eluted with buffer B (same as buffer A but containing 500 mM imidazole). Fractions were analyzed by 15% SDS-PAGE. Fractions containing protein were pooled and dialyzed against 20 mM Tris-HCl, pH 7.5, and concentrated using an Amicon ultrafiltration centrifugal tube with a molecular weight cutoff of 3 kDa.

To attach C7 or C8 tags, GB1 Q32C was first reduced by 5 equivalents of DTT, followed by buffer exchange to 20 mM Tris-HCl, pH 7.5, to wash out DTT. The reduced protein was labelled with 5 equivalents of C7 or C8 tag loaded with Tb^{3+} , Tm^{3+} or Y^{3+} in 20 mM Tris-HCl, pH 7.5, and left at room temperature overnight. Excess tag was washed out using NMR buffer (20 mM MES, pH 6.5). The final protein concentration was 0.1 mM.

¹⁵N-HSQC spectra of differently tagged GB1 Q32C were recorded at 25 °C using t_{1max} (¹⁵N) = 43 ms and t_{2max} (¹H) = 136 ms.

HPPK expression, purification and tagging

The HPPK S112C/C80A mutant was created by the QuickChange (Stratagene (La JollA), CA, USA) method using pET28a-HPPK vector as a template. Uniformly ¹⁵N-labeled HPPK S112C/A80C was expressed and purified following established protocols for the wild-type protein.^{2,3}

To attach C7 to HPPK S112C/C80A, DTT in the HPPK storage buffer was removed by passage over a PD-10 column equilibrated with degassed buffer (50 mM HEPES, pH 8). The eluate was made to 10 mM MgCl₂ and 1 mM α , β -methyleneadenosine 5'-triphosphate. C7 loaded with either Tm³⁺ or Y³⁺ was added in 3 fold excess and the reaction stirred at room temperature for 15 min. Excess tag was removed by passage over a PD-10 column (50 mM HEPES, pH 8) and the eluate again made to 10 mM MgCl₂ and 1 mM α , β -methyleneadenosine 5'-triphosphate. The sample was then concentrated in an Amicon ultrafiltration centrifugal tube with a molecular weight cutoff of 3 kDa to a final protein concentration of approximately 100 μ M. Prior to NMR measurements, 400 μ M of a small molecule inhibitor was added to the sample.

¹⁵N-HSQC spectra of differently tagged HPPK S112C/C80A were recorded at 22 °C using $t_{1\text{max}}$ (¹⁵N) = 56 ms and $t_{2\text{max}}$ (¹H) = 107 ms.

Figure S7. Overlay of ¹⁵N-HSQC spectra of **C5** (top spectra) and **C6** (bottom spectra) tagged ubiquitin A28C, loaded with Y^{3+} (blue), Dy^{3+} (magenta), Tb^{3+} (orange), Tm^{3+} (green) or Yb^{3+} (red). The spectra were recorded at 25 °C and pH 8 at a ¹H NMR frequency of 600 MHz.

Figure S8. Overlay of ¹⁵N-HSQC spectra of **C7** (top spectra) and **C8** (bottom spectra) tagged ubiquitin A28C, loaded with Y^{3+} (blue), Dy^{3+} (magenta), Tb^{3+} (orange), Tm^{3+} (green) or Yb^{3+} (red). The spectra were recorded at 25 °C and pH 8 at a ¹H NMR frequency of 600 MHz.

Figure S9. Overlay of ¹⁵N-HSQC spectra of **C7** tagged ubiquitin A28C, loaded with Y^{3+} (blue) and Yb^{3+} (red). The spectra are the same as in the top panel of Figure S7, except that a larger spectral width is displayed, and only Y^{3+} and Yb^{3+} data are included.

			С	5			C	.6	
Res	idue	Dy ³⁺	Tb ³⁺	Tm ³⁺	Yb ³⁺	Dy ³⁺	Tb ³⁺	Tm ³⁺	Yb ³⁺
2	GLN	-0.212	-0.125	0.315	0.030	0.293	0.307	-0.253	-0.059
3	ILE	-0.349	-0.198	0.500	0.094	0.422	0.368	-0.248	-0.071
4	PHE	-0.305	-0.168	0.405	0.102	0.377	0.329	-0.199	-0.059
5	VAL	-0.354	-0.184	0.414	0.119	0.375	0.265	-0.105	-0.050
6	LYS	-0.287	-0.154	0.320	0.106	0.357	0.283	-0.114	-0.046
7	THR	-0.196	-0.095	0.202	0.086	0.241	0.168	-0.036	-0.027
8	LEU	-0.131	-0.061	0.116	0.059	0.069	0.176		
9	THR								
10	GLY	-0.115	-0.049	0.097	0.047				
11	LYS	-0.127	-0.053	0.104	0.044	0.159	0.100	-0.010	-0.021
12	THR	-0.170	-0.080	0.153	0.051				
13	ILE	-0.295	-0.145	0.312	0.096	0.284	0.171	-0.039	-0.036
14	THR	-0.266	-0.172	0.361	0.091	0.248	0.123	-0.014	-0.031
15	LEU	-0.419	-0.224	0.548	0.126	0.396	0.281	-0.145	-0.057
16	GLU		-0.311	0.760	0.095	0.409	0.279	-0.178	-0.063
17	VAL	-0.361	-0.206	0.572	0.049	0.513	0.528	-0.447	-0.105
18	GLU	-0.376	-0.178	0.825	0.090	0.718	1.088	-1.004	-0.227
20	SER	-0.170	-0.039	0.636	0.053	0.599	0.954	-1.009	-0.194
21	ASP	-0.378	-0.155	1.044	0.149	1.055	1.438	-1.398	-0.298
22	THR				0.580				
23	ILE				0.515				
24	GLU								
25	ASN								
26	VAL				0.731				
27	LYS				0.756				
28	CYS				1.454				
29	LYS				1.029				
30	ILE				0.712				-0.059
31	GLN				0.863			0.947	-0.020
32	ASP				1.071			1.293	
33	LYS				0.563	0.133	-0.432	0.610	0.031
34	GLU				0.331	0.198	-0.196	0.386	0.004
35	GLY			0.118	0.237	0.092	-0.283	0.456	0.017
36	ILE		0.295	-0.042	0.162	0.248	-0.085	0.350	-0.005
39	ASP				-0.125	0.654		-0.372	-0.037
40	GLN		0.026	-0.350	0.028	0.529	0.709	-0.182	-0.036
41	GLN		-0.224	-0.022	0.121	0.806	0.876	-0.267	-0.071
42	ARG		-0.234	0.173	0.091	0.572	0.585	-0.188	-0.052
43	LEU		-0.354	0.460	0.212	0.813	0.800	-0.372	-0.088

 Table S2. Experimental PCSs for C5 and C6 tagged ubiquitin A28C.

44	ILE	-0.366	-0.219	0.366	0.129	0.514	0.479	-0.228	-0.064
45	PHE	-0.294	-0.186	0.345	0.124	0.371	0.373	-0.209	-0.048
46	ALA								
47	GLY	-0.188	-0.114	0.206	0.059	0.221	0.219	-0.117	-0.029
48	LYS	-0.207	-0.142	0.240	0.078	0.238	0.242	-0.130	-0.029
49	GLN	-0.215	-0.145	0.220	0.081	0.230	0.228	-0.103	-0.018
50	LEU	-0.448	-0.282	0.428	0.158	0.575	0.585	-0.307	-0.066
51	GLU		-0.373	0.575	0.190	0.552	0.571	-0.356	-0.063
52	ASP				0.257			-0.588	-0.082
53	GLY								
54	ARG		-0.523		0.320	0.760		-0.889	-0.142
55	THR	-0.404	-0.226	0.889	0.189	0.360	0.711	-0.767	-0.122
56	LEU	-0.549	-0.268	1.106	0.228	1.224	1.302	-1.172	-0.250
57	SER	-0.316	-0.156	0.694	0.127	0.533	0.776	-0.745	-0.146
58	ASP	-0.288	-0.152	0.597	0.110	0.338	0.565	-0.574	-0.101
59	TYR	-0.294	-0.168	0.530	0.118	0.369	0.504	-0.449	-0.085
60	ASN	-0.226	-0.123	0.390	0.080	0.255	0.364	-0.332	-0.063
61	ILE	-0.266	-0.150	0.443	0.085	0.371	0.462	-0.391	-0.081
62	GLN	-0.223	-0.123	0.339	0.069	0.303	0.346	-0.276	-0.062
63	LYS	-0.174	-0.099	0.296	0.049	0.269	0.320	-0.263	-0.052
64	GLU	-0.221	-0.125	0.323	0.062	0.295	0.300	-0.228	-0.056
65	SER	-0.236	-0.133	0.335	0.071	0.312	0.319	-0.232	-0.057
66	THR	-0.228	-0.131	0.289	0.074	0.287	0.273	-0.171	-0.046
67	LEU	-0.329	-0.185	0.399	0.117	0.417	0.374	-0.194	-0.060
68	HIS	-0.313	-0.182	0.358	0.130	0.424	0.385	-0.191	-0.054
69	LEU	-0.287	-0.142	0.270	0.097	0.380	0.310	-0.108	-0.046
70	VAL	-0.278	-0.164	0.234	0.115	0.447	0.404	-0.139	-0.047

			C	.7				C	8	
Res	sidue	Dy ³⁺	Tb ³⁺	Tm ³⁺	Yb ³⁺		Dy ³⁺	Tb ³⁺	Tm ³⁺	Yb ³⁺
2	GLN	0.007	-0.068	0.151	-0.077	-	0.428	-0.053	-0.233	-0.093
3	ILE	0.338	-0.094	0.492	-0.119	-	0.387	-0.087	-0.306	-0.189
4	PHE	0.585	0.000	0.508	-0.099		0.107	0.034	-0.290	-0.177
5	VAL	0.429	-0.187	1.184	0.004	-	0.033	-0.140	-0.061	-0.216
6	LYS	0.705	-0.022	0.914	-0.020		0.406	0.028	-0.197	-0.206
7	THR	0.124	-0.211	1.210	0.121		0.041	-0.161	0.090	-0.136
8	LEU									
9	THR									
10	GLY									
11	LYS					-	0.151	-0.212	0.196	-0.076
12	THR									
13	ILE	-0.014	-0.345	1.464	0.125	-	0.260	-0.265	0.180	-0.171
14	THR	-0.710	-0.589	1.642	0.187	-	0.923	-0.468	0.463	-0.095
15	LEU	0.094	-0.304	1.042	-0.043	-	0.627	-0.284	-0.048	-0.194
16	GLU	-0.646	-0.600	0.974	-0.088					
17	VAL	0.133	-0.045	0.012	-0.203			-0.118	-0.530	-0.184
18	GLU	0.808	0.353	-0.775	-0.400			0.005	-1.196	-0.266
20	SER	0.416	0.330	-0.684	-0.226	-	0.528	0.136	-0.746	-0.030
21	ASP	1.159	0.564	-1.036	-0.408	-	0.013	0.447	-1.343	-0.166
22	THR									
23	ILE			-1.960	-0.900				-2.441	
24	GLU									
25	ASN				-2.435					
26	VAL				-2.109					-1.464
27	LYS				-2.630					
28	CYS				-6.010					
29	LYS									
30	ILE									-1.932
31	GLN								-0.464	
32	ASP									
33	LYS				2.219					
34	GLU				1.893					
35	GLY									
36	ILE				1.941					-0.352
39	ASP									
40	GLN		0.368	1.479	-0.122				-1.003	-0.336
41	GLN			1.082	-0.425				-1.054	-0.491
42	ARG		0.355	0.798	-0.223				-0.716	-0.353
43	LEU		0.643	-0.002	-0.434				-1.056	-0.333

 Table S3. Experimental PCSs for C7 and C8 tagged ubiquitin A28C.

44	ILE	1.622	0.327	0.325	-0.228		0.454	-0.642	-0.265
45	PHE	1.200	0.291	0.010	-0.194	1.013	0.449	-0.522	-0.146
46	ALA								
47	GLY	0.697	0.157	0.101	-0.103	0.588	0.266	-0.330	-0.120
48	LYS	0.845	0.216	-0.015	-0.142	0.741	0.340	-0.390	-0.112
49	GLN	0.992	0.273	-0.132	-0.172		0.470	-0.439	-0.106
50	LEU	1.914	0.505	-0.235	-0.336		0.797	-0.831	-0.218
51	GLU		0.683	-0.671	-0.396		1.158	-0.961	-0.187
52	ASP			-1.308	-0.627			-1.440	-0.174
53	GLY								
54	ARG			-1.317	-0.524				-0.121
55	THR	1.351	0.667	-0.867	-0.339		0.963	-0.929	-0.061
56	LEU		0.730	-0.972	-0.466		0.931		-0.220
57	SER	1.065	0.447	-0.607	-0.280	0.561	0.509	-0.836	-0.102
58	ASP	1.027	0.453	-0.574	-0.258	0.717	0.567	-0.730	-0.093
59	TYR	1.101	0.413	-0.445	-0.251	0.817	0.546	-0.684	-0.109
60	ASN	0.798	0.298	-0.310	-0.185	0.517	0.311	-0.513	-0.087
61	ILE	0.913	0.314	-0.276	-0.217	0.533	0.372	-0.528	-0.155
62	GLN	0.627	0.167	-0.049	-0.142	0.270	0.198	-0.410	-0.111
63	LYS	0.324	0.084	-0.027	-0.104	-0.037	0.085	-0.316	-0.083
64	GLU	0.282	0.005	0.181	-0.088	-0.112	2 0.021	-0.268	-0.109
65	SER	0.490	0.068	0.160	-0.107	0.105	0.093	-0.323	-0.121
66	THR	0.567	0.075	0.257	-0.092	0.286	0.122	-0.286	-0.130
67	LEU	0.949	0.100	0.539	-0.127	0.509	0.144	-0.385	-0.216
68	HIS	1.198	0.197	0.429	-0.150	0.900	0.291	-0.463	-0.209
69	LEU	0.920	0.051	0.966	-0.028	0.713	0.105	-0.279	-0.242
70	VAL	1.387	0.199	0.812	-0.109		0.277	-0.469	-0.270

Table S4	Table S4. Δχ-Tensor parameters for C5–C8 tagged ubiquitin A28C (common fits).										
Tag	Ln ³⁺	# PCS	$\Delta \chi_{ax}$	$\Delta\chi_{ m rh}$	\mathcal{Q}	α	β	γ			
C5	Dy ³⁺	39	12.2 (0.6)	5.7 (0.2)	0.06	146	98	98			
	Tb ³⁺	47	11.3 (0.5)	2.6 (0.2)	0.09	154	97	129			
	Tm ³⁺	47	-15.4	-9.5	0.08	122	88	101			
	Yb ³⁺	61	-6.6 (0.3)	-1.4 (0.2)	0.09	119	100	111			
C6	Dy ³⁺	49	9.7	5.7	0.09	34	147	82			
	Tb ³⁺	47	-14.1 (0.3)	-3.1 (0.1)	0.05	44	64	100			
	Tm ³⁺	51	11.8 (0.3)	4.0 (0.1)	0.10	40	71	132			
	Yb ³⁺	51	1.9 (0.1)	1.0 (0.0)	0.12	47	62	107			
C7	Dy ³⁺	35	34.6 (0.6)	4.7 (0.7)	0.07	59	35	24			
	Tb ³⁺	40	12.7 (0.3)	0.8 (0.3)	0.04	42	45	71			
	Tm ³⁺	44	-22.0	-12.2	0.07	32	61	63			
	Yb ³⁺	51	-8.1 (0.3)	-2.1 (0.5)	0.05	41	39	23			
C8	Dy ³⁺	28	37.1 (1.1)	8.5 (0.7)	0.03	88	46	2			
	Tb^{3+}	37	18.6 (0.7)	7.8 (0.6)	0.07	71	48	8			
	Tm ³⁺	43	-15.4	-10.0	0.05	75	26	40			
	Yb ³⁺	46	-4.6 (0.1)	-1.9 (0.2)	0.05	129	23	176			

The axial and rhombic components of the $\Delta \chi$ -tensors are reported in units of 10^{-32} m³, and the Euler angles in degrees, using the *zyz* convention and unique tensor representation.⁴ The determined metal coordinates (x, y, z) for each tag relative to the first structure of the NMR structure of ubiquitin (PDB ID 2MJB)⁵ are: C5 2.507, -2.130, - 17.878; C6 7.278, 3.052, -12.752; C7 -2.505, -3.481, -14.778; C8 1.396, -3.879, -14.698. Standard deviations (in brackets) were determined from random removal of 10% of the PCSs and recalculating the $\Delta \chi$ -tensor 1,000 times, in some cases the *z* and *y* axes of the tensor were of similar magnitude and swapped in different fits, thus standard deviations were not determined. Quality factors (*Q*) were calculated as the root-mean-square deviation between the experimental and back-calculated PCSs divided by the root-mean-square of the experimental PCSs.

Figure S10. Overlay of ¹⁵N-HSQC spectra of C7 tagged ubiquitin A28C, loaded with Y^{3+} (blue), Dy^{3+} (magenta), Tb^{3+} (orange), Tm^{3+} (green) or Yb^{3+} (red). The spectra were recorded at 25 °C and pH 6.5 at a ¹H NMR frequency of 600 MHz.

Figure S11. Correlations between measured PCSs at pH 8.0 and pH 6.5 for C7 tagged ubiquitin A28C, loaded with Dy^{3+} (magenta), Tb^{3+} (blue), Tm^{3+} (green) or Yb^{3+} (red). Only PCSs which were assigned at both pH values are shown. The solid line represents a perfect correlation.

Figure S12. Plots of PCSs measured at 25 °C and pH 8 *vs.* residue number for **C5–C8** tagged ubiquitin A28C. Colour scheme: Dy^{3+} - blue, Tb^{3+} - orange, Tm^{3+} - green, Yb^{3+} - red.

Figure S13. Comparison of $\Delta \chi$ -tensor orientations and individual metal positions determined for different metal complexes of C1, C7 and C8 bound to ubiquitin A28C. Blue/red isosurfaces indicate positive/negative PCSs of 1 ppm.

Figure S14. Overlay of ¹⁵N-HSQC spectra of C7 tagged ubiquitin A28C, loaded with Y^{3+} at 25 °C (blue) or Tm³⁺ at 10 °C (magenta), 25 °C (green), 32 °C (cyan) and 40 °C (red). The spectra were recorded at pH 8 at a ¹H NMR frequency of 600 MHz.

	C7-Tr	n ³⁺		C8-Tr	n ³⁺
Res	idue	¹ D _{HN} RDC (Hz)	Res	idue	¹ D _{HN} RDC (Hz)
2	GLN	1.82	2	GLN	-2.86
3	ILE	-2.67	3	ILE	-4.99
4	PHE	-7.35	4	PHE	-3.77
5	VAL	-8.08	5	VAL	0.06
6	LYS	-7.41	6	LYS	1.03
7	THR	-2.25	7	THR	3.22
13	ILE	-7.73	13	ILE	0.24
15	LEU	-2.73	14	THR	-1.83
17	VAL	3.60	15	LEU	-5.35
18	GLU	-0.17	17	VAL	-1.87
20	SER	-5.36	18	GLU	-0.30
44	ILE	-3.65	20	SER	0.19
47	GLY	-6.98	40	GLN	-6.01
50	LEU	-6.08	41	GLN	2.55
55	THR	-8.09	43	LEU	6.14
57	SER	4.80	44	ILE	3.95
58	ASP	-1.21	45	PHE	3.33
59	TYR	-5.83	47	GLY	1.65
61	ILE	12.46	48	LYS	0.91
62	GLN	5.65	49	GLN	2.43
64	GLU	4.38	50	LEU	4.43
65	SER	9.30	55	THR	-0.68
66	THR	-2.80	57	SER	-3.28
67	LEU	-7.40	58	ASP	-5.40
68	HIS	-4.86	59	TYR	-3.45
69	LEU	3.28	61	ILE	1.22
70	VAL	6.27	62	GLN	0.55
			64	GLU	-4.44
			65	SER	2.67
			66	THR	-4.87
			67	LEU	-1.52
			68	HIS	3.28
			69	LEU	4.68
			70	VAL	5.41

Table S5. ${}^{1}D_{\text{HN}}$ RDCs of **C7** and **C8** tagged ubiquitin A28C loaded with Tm³⁺, measured at 600 MHz.

Table S6. Alignment tensor parameters for C7 and C8 tagged ubiquitin A28C loaded with Tm ³⁺ . ^a										
Tag	Ln ³⁺	# RDC	A _{ax}	A_{rh}	Q	α	β	γ	$\Delta \chi_{ax}{}^{b}$	$\Delta \chi_{rh}^{\ b}$
C7	Tm ³⁺	27	5.33	1.67	0.13	105	140	164	20.1	6.5
C8	Tm ³⁺	34	2.77	1.41	0.23	90	104	154	10.1	5.5
^a The avi	al and rhom	hic componen	ts of the al	ionment ter	sor are ren	orted in u	nits of 10^{-4}	¹ and the E	uler angles	in

^a The axial and rhombic components of the alignment tensor are reported in units of 10⁻⁴ and the Euler angles in degrees, using the *zyz* convention. Quality factors (*Q*) were calculated as the root-mean-square deviation between the experimental and back-calculated RDCs divided by the root-mean-square of the experimental RDCs. ^b $\Delta \chi$ -Tensor parameters in units of 10⁻³² m³ determined from the A_{ax} and A_{rh} using Equation S1.

Equation S1. For comparison of $A_{ax,rh}$ and $\Delta \gamma_{ax,rh}$

$$\Delta \chi_{ax,rh} = A_{ax,rh} \frac{15\mu_0 KT}{B_0^2}$$

where B_0 is the field strength (14.1 T), μ_0 is the magnetic permeability of vacuum (12.566 x 10⁻⁷ T² m³ J⁻¹), *k* is the Boltzmann constant (1.38 x 10⁻²³ J K⁻¹), *T* is temperature (in Kelvin), $\Delta \chi_{ax,rh}$ are the axial and rhombic components of the magnetic susceptibility anisotropy tensor (in m³) respectively and $A_{ax,rh}$ are the axial and rhombic components of the alignment tensor respectively.

Figure S15. Overlay of ¹⁵N-HSQC spectra of C7 (top spectra) and C8 (bottom spectra) tagged GB1 Q32C, loaded with Y^{3+} (blue), Tb^{3+} (orange) or Tm^{3+} (green). The spectra were recorded at 25 °C and pH 6.5 at a ¹H NMR frequency of 600 MHz.

Table S	Table S7. Δχ-Tensor parameters for C7 and C8 tagged GB1 Q32C (common fits). ^{a,b}									
Tag	Ln ³⁺	# PCS	$\Delta \chi_{ax}$	$\Delta\chi_{ m rh}$	Q	α	β	γ		
C7	Tb ³⁺	47	2.9 (0.2)	1.5 (0.1)	0.13	28	35	47		
	Tm ³⁺	37	-13.8 (0.7)	-4.7 (0.3)	0.06	145	55	79		
C8	Tb ³⁺	40	-5.7	-3.5	0.05	73	90	57		
	Tm ³⁺	40	-15.0 (0.4)	-4.1 (0.5)	0.06	164	54	35		
2 - 2										

^a See footnote a in Table 1.

^b The determined metal coordinates (x, y, z) for each tag relative to the crystal structure of GB1 (PDB ID 1PGA⁶) are: C7 31.338, 29.630, 12.581; C8 32.563, 31.104, 14.230.

Figure S16. Correlations between experimental and back-calculated PCSs for C7 and C8 tagged GB1 Q32C and C7 tagged HPPK S112C/C80A, loaded with Tb^{3+} (blue) or Tm^{3+} (green). Solid lines represent perfect correlation.

		C	7	C	8
Res	idue	Tb ³⁺	Tm ³⁺	Tb ³⁺	Tm ³⁺
2	THR	0.031	-0.032	0.217	-0.210
3	TYR	0.039	-0.044	0.336	-0.312
4	LYS	0.004	0.041	0.221	-0.200
5	LEU	0.035	0.422	0.182	0.157
6	ILE	-0.018	0.393	0.016	0.187
7	LEU	-0.007	0.766	-0.181	0.697
8	ASN	-0.048	0.625	-0.293	0.598
9	GLY	-0.039	0.728	-0.420	0.839
10	LYS	-0.022	0.583	-0.511	0.797
11	THR	-0.034	0.662	-0.567	0.948
12	LEU	-0.050	0.846	-0.610	1.146
13	LYS	-0.029	0.841	-0.422	1.025
14	GLY	-0.010	0.811	-0.284	0.862
15	GLU	0.044	0.886	-0.140	0.867
16	THR	0.065	0.761	0.068	0.568
17	THR	0.153	0.709	0.291	0.484
18	THR	0.083	0.134	0.412	-0.194
19	GLU	0.121	0.038	0.535	-0.342
20	ALA	0.033	-0.224	0.394	-0.531
21	VAL	-0.012	-0.468	0.418	-0.771
22	ASP	-0.049	-0.529	0.382	-0.803
23	ALA	-0.058	-0.428	0.296	-0.647
24	ALA	-0.100	-0.625	0.358	-0.894
25	THR	-0.131		0.465	-1.249
26	ALA	-0.097		0.571	
27	GLU	-0.157		0.575	
28	LYS	-0.276			
29	VAL	-0.197			
30	PHE	-0.146			
31	LYS	-0.538			
32	CYS				
33	TYR				
34	ALA				
35	ASN				
36	ASP				
37	ASN				
38	GLY				
39	VAL				
40	ASP	-0.080		-0.872	

 Table S8. Experimental PCSs for C7 and C8 tagged GB1 Q32C.

GLY	-0.109				0.309
GLU	-0.061	0.226			0.167
TRP	-0.095	-0.022			-0.162
THR	-0.073			0.027	-0.149
TYR	-0.056	-0.116		0.043	-0.256
ASP	-0.035	-0.062		0.095	-0.226
ASP	-0.035	-0.097		0.082	-0.208
ALA	-0.024	-0.060		0.075	-0.154
THR	-0.015	-0.013		0.083	-0.128
LYS	-0.016	-0.053		0.123	-0.188
THR	-0.025	-0.022		0.124	-0.193
PHE	-0.031	0.062		0.157	-0.192
THR	-0.063	0.075		0.040	-0.126
VAL	-0.060	0.439		-0.125	0.280
THR	-0.067	0.304		-0.196	0.211
GLU	-0.041	0.452		-0.354	0.495
	GLY GLU TRP THR TYR ASP ALA THR LYS THR PHE THR VAL THR GLU	GLY -0.109 GLU -0.061 TRP -0.095 THR -0.073 TYR -0.056 ASP -0.035 ALA -0.024 THR -0.015 LYS -0.016 THR -0.025 PHE -0.031 THR -0.063 VAL -0.067 GLU -0.041	GLY-0.109GLU-0.0610.226TRP-0.095-0.022THR-0.073TYR-0.056-0.116ASP-0.035-0.062ASP-0.035-0.097ALA-0.024-0.060THR-0.015-0.013LYS-0.016-0.053THR-0.025-0.022PHE-0.0310.062THR-0.0630.075VAL-0.0600.439THR-0.0670.304GLU-0.0410.452	GLY-0.109GLU-0.0610.226TRP-0.095-0.022THR-0.073	GLY-0.109GLU-0.0610.226TRP-0.095-0.022THR-0.0730.027TYR-0.056-0.1160.043ASP-0.035-0.0620.095ASP-0.035-0.0970.082ALA-0.024-0.0600.075THR-0.015-0.0130.083LYS-0.016-0.0530.123THR-0.025-0.0220.124PHE-0.0310.0620.157THR-0.0600.439-0.125THR-0.0670.304-0.196GLU-0.0410.452-0.354

Figure S17. Overlay of ¹⁵N-HSQC spectra of **C7** tagged HPPK S112C/C80A, loaded with Y^{3+} (blue) and Tm³⁺ (green). The spectra were recorded at 22 °C and pH 8 at a ¹H NMR frequency of 600 MHz, in the presence of 10 mM MgCl₂, 1 mM α , β -methyleneadenosine 5'-triphosphate and 400 μ M of a small molecule inhibitor.

Figure S18. Structure of HPPK with the PCS-determined metal ion position for C7 tagged HPPK S112C/C80A loaded with Tm^{3+} . The Tm^{3+} ion is represented by a green sphere. D107 and S112 are shown as sticks in magenta and cyan, respectively.

C7-Tm ³⁺												
	Resi	due	PCS	Res	idue	PCS	Re	sidue	PCS			
	2	ILE	-0.990	42	GLU	-0.533	102	GLY	-1.865			
	3	GLN	-1.049	43	THR	-0.703	103	GLU	-1.252			
	4	ALA	-1.348	44	ALA	-0.689	122	ALA	-1.15			
	5	TYR	-2.350	50	GLU	-0.485	128	LEU	-0.934			
	6	LEU	-1.864	51	GLN	-0.479	130	ASP	-0.423			
	7	GLY	-2.774	53	ASN	-0.466	131	ILE	-0.479			
	8	LEU	-1.665	54	PHE	-0.732	132	ALA	-0.402			
	9	GLY	-1.461	55	LEU	-0.763	133	ALA	-0.112			
	10	SER	-0.952	56	ASN	-0.838	134	ASN	0.089			
	11	ASN	-0.676	57	LEU	-1.220	135	VAL	0.085			
	12	ILE	-0.497	58	CYS	-1.043	136	VAL	0.319			
	13	GLY	-0.310	60	GLU	-0.975	137	GLU	1.596			
	14	ASP	-0.321	63	THR	-1.047	142	LEU	4.056			
	15	ARG	-0.412	64	THR	-0.892	143	LYS	1.830			
	16	GLU	-0.424	65	LEU	-1.101	144	VAL	0.643			
	17	SER	-0.380	66	THR	-1.184	145	LYS	0.575			
	19	LEU	-0.591	67	VAL	-2.186	146	ASP	1.174			
	20	ASN	-0.542	69	GLN	-1.458	149	PHE	0.187			
	21	ASP	-0.501	70	LEU	-1.729	150	VAL	0.252			
	22	ALA	-0.589	72	GLU	-1.297	151	ASP	-0.160			
	23	ILE	-0.799	73	CYS	-1.135	152	ASP	-0.205			
	24	LYS	-0.654	74	CYS	-1.404	153	SER	-0.398			
	29	TYR	-0.689	75	LEU	-1.162	154	VAL	-0.436			
	30	ASP	-0.555	81	LEU	-0.462	155	LYS	-0.496			
	31	GLY	-0.615	95	ASP	-1.187	156	ARG	-0.330			
	36	ASN	-0.741	96	VAL	-1.639	157	TYR	-0.433			
	41	TYR	-0.716	97	ASP	-2.588	158	LYS	-0.370			

Table S9. Experimental PCS for C7 tagged HPPK S112C/C80A loaded with Tm³⁺.

Figure S19. ¹H and ¹³C NMR spectra of C5.

Figure S20. ¹H NMR spectrum of C5-Y³⁺.

Figure S21. ¹H and ¹³C NMR spectra of **4**.

Figure S22. ¹H and ¹³C NMR spectra of **5**.

Figure S23. ¹H and ¹³C NMR spectra of 6.

Figure S24. ¹H and ¹³C NMR spectra of 7.

Figure S25. ¹H and ¹³C NMR spectra of 8.

Figure S26. ¹H and ¹³C NMR spectra of **9**.

Figure S27. ¹H and ¹³C NMR spectra of C6.

Figure S28. ¹H NMR spectrum of C6-Y³⁺.

Figure S29. 1 H and 13 C NMR spectra of 10.

Figure S30. ¹H and ¹³C NMR spectra of **11**.

Figure S31. ¹H and ¹³C NMR spectra of C7.

Figure S32. ¹H NMR spectrum of $C7-Y^{3+}$.

Figure S33. Analytical HPLC traces showing absorption at 254 nm of purified C5, C6 and C7 tags.

References

- 1. C. Neylon, S. E. Brown, V. Kralicek, C. S. Miles, C. Love and N. E. Dixon, *Biochemistry*, **2000**, 39, 11989–11999.
- S. Chhabra, O. Dolezal, B. M. Collins, J. Newman, J. S. Simpson, I. G. Macreadie, R. Fernley, T. S. Peat and J. D. Swarbrick, *PLoS One*, 2012, 7, e29444.
- S. Chhabra, J. Newman, T. S. Peat, R. T. Fernley, J. Caine, J. S. Simpson and J. D. Swarbrick, *Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun.*, 2010, 66, 575–578.
 C. Schmitz, M. J. Stanton-Cook, X.-C. Su, G. Otting and T. Huber, *J. Biomol. NMR*, 2008,
- 4. C. Schmitz, M. J. Stanton-Cook, X.-C. Su, G. Otting and T. Huber, *J. Biomol. NMR*, **2008**, 41, 179–189.
- 5. A. S. Maltsev, A. Grishaev, J. Roche, M. Zasloff and A. Bax, J. Am. Chem. Soc., 2014, 136, 3752–3755.
- 6. T. Gallagher, P. Alexander, P. Bryan and G. Gilliland, *Biochemistry*, 1994, 33, 4721–4729.